Atnaujinkite slapukų nuostatas

Mesoscopic Physics of Electrons and Photons [Minkštas viršelis]

(Technion - Israel Institute of Technology, Haifa),
  • Formatas: Paperback / softback, 608 pages, aukštis x plotis x storis: 244x170x38 mm, weight: 950 g, Worked examples or Exercises
  • Išleidimo metai: 14-Jul-2011
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521349478
  • ISBN-13: 9780521349475
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 608 pages, aukštis x plotis x storis: 244x170x38 mm, weight: 950 g, Worked examples or Exercises
  • Išleidimo metai: 14-Jul-2011
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521349478
  • ISBN-13: 9780521349475
Kitos knygos pagal šią temą:
A solid 2007 introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, and is ideal for graduate students and researchers in physics, electrical engineering and applied physics.

Quantum mesoscopic physics covers a whole class in interference effects related to the propagation of waves in complex and random media. These effects are ubiquitous in physics, from the behavior of electrons in metals and semiconductors to the propagation of electromagnetic waves in suspensions such as colloids, and quantum systems like cold atomic gases. A solid introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, highlighting the common aspects of the various optical and electronic phenomena involved and presenting a large number of experimental results. With over 200 figures, and exercises throughout, the book is ideal for graduate students in physics, electrical engineering, applied physics, acoustics and astrophysics. It will also be an interesting reference for researchers in this rapidly evolving field.

Recenzijos

Review of the hardback: ' the type of book from which one can learn the subject even without a teacher.' Carlo Beenakker, Leiden University Review of the hardback: ' highly recommended to both opticians and researchers interested in nanoelectronic devices. Applications to cold-atom and BEC systems can also be visualized.' Joe Imry, Weizmann Institute of Science Review of the hardback: ' unique in equipping the reader with a powerful, complete, and yet very intuitive, diagrammatic tool box for computing all quantities of interest for mesoscopic physics problems dealing with diffusive, weakly-interacting particles.' Michel Devoret, Yale University Review of the hardback: ' probably the most extensive effort thus far to provide an introduction and overview of wave transmission through objects with many scattering centers.' Markus Buttiker, University of Geneva Review of the hardback: 'Invaluable to anybody already working in the field, but also highly recommended for newcomers.' Ad Lagendijk, University professor Amsterdam Review of the hardback: 'This text serves as both a good introductory text to the propagation of waves in complex and disordered media and a handbook for those already working in the field.' Contemporary Physics

Daugiau informacijos

2007 introduction to quantum mesoscopic physics for graduate students and researchers in physics and engineering.
Preface xiii
How to use this book xv
1 Introduction: mesoscopic physics
1(30)
1.1 Interference and disorder
1(3)
1.2 The Aharonov--Bohm effect
4(3)
1.3 Phase coherence and the effect of disorder
7(2)
1.4 Average coherence and multiple scattering
9(3)
1.5 Phase coherence and self-averaging: universal fluctuations
12(2)
1.6 Spectral correlations
14(1)
1.7 Classical probability and quantum crossings
15(3)
1.7.1 Quantum crossings
17(1)
1.8 Objectives
18(13)
2 Wave equations in random media
31(39)
2.1 Wave equations
31(5)
2.1.1 Electrons in a disordered metal
31(1)
2.1.2 Electromagnetic wave equation -- Helmholtz equation
32(1)
2.1.3 Other examples of wave equations
33(3)
2.2 Models of disorder
36(34)
2.2.1 The Gaussian model
37(2)
2.2.2 Localized impurities: the Edwards model
39(2)
2.2.3 The Anderson model
41(2)
Appendix A2.1 Theory of elastic collisions and single scattering
43(1)
A2.1.1 Asymptotic form of the solutions
44(2)
A2.1.2 Scattering cross section and scattered flux
46(1)
A2.1.3 Optical theorem
47(4)
A2.1.4 Born approximation
51(3)
Appendix A2.2 Reciprocity theorem
54(2)
Appendix A2.3 Light scattering
56(1)
A2.3.1 Classical Rayleigh scattering
56(4)
A2.3.2 Mie scattering
60(1)
A2.3.3 Atom--photon scattering in the dipole approximation
61(9)
3 Perturbation theory
70(22)
3.1 Green's functions
71(8)
3.1.1 Green's function for the Schrodinger equation
71(6)
3.1.2 Green's function for the Helmholtz equation
77(2)
3.2 Multiple scattering expansion
79(7)
3.2.1 Dyson equation
79(3)
3.2.2 Self-energy
82(4)
3.3 Average Green's function and average density of states
86(6)
Appendix A3.1 Short range correlations
88(4)
4 Probability of quantum diffusion
92(56)
4.1 Definition
92(3)
4.2 Free propagation
95(1)
4.3 Drude--Boltzmann approximation
96(1)
4.4 Diffuson or ladder approximation
97(5)
4.5 The Diffuson at the diffusion approximation
102(2)
4.6 Coherent propagation: the Cooperon
104(6)
4.7 Radiative transfer
110(38)
Appendix A4.1 Diffuson and Cooperon in reciprocal space
113(1)
A4.1.1 Collisionless probability P0(q, ω)
114(1)
A4.1.2 The Diffuson
115(2)
A4.1.3 The Cooperon
117(3)
Appendix A4.2 Hikami boxes and Diffuson crossings
120(1)
A4.2.1 Hikami boxes
120(5)
A4.2.2 Normalization of the probability and renormalization of the diffusion coefficient
125(3)
A4.2.3 Crossing of two Diffusons
128(4)
Appendix A4.3 Anisotropic collisions and transport mean free path
132(6)
Appendix A4.4 Correlation of diagonal Green's functions
138(4)
Appendix A4.5 Other correlation functions
142(1)
A4.5.1 Correlations of Green's functions
142(3)
A4.5.2 A Ward identity
145(1)
A4.5.3 Correlations of wave functions
145(3)
5 Properties of the diffusion equation
148(47)
5.1 Introduction
148(1)
5.2 Heat kernel and recurrence time
149(3)
5.2.1 Heat kernel -- probability of return to the origin
149(2)
5.2.2 Recurrence time
151(1)
5.3 Free diffusion
152(3)
5.4 Diffusion in a periodic box
155(1)
5.5 Diffusion in finite systems
156(3)
5.5.1 Diffusion time and Thouless energy
156(1)
5.5.2 Boundary conditions for the diffusion equation
156(1)
5.5.3 Finite volume and "zero mode"
157(1)
5.5.4 Diffusion in an anisotropic domain
158(1)
5.6 One-dimensional diffusion
159(6)
5.6.1 The ring: periodic boundary conditions
160(1)
5.6.2 Absorbing boundaries: connected wire
161(1)
5.6.3 Reflecting boundaries: isolated wire
162(2)
5.6.4 Semi-infinite wire
164(1)
5.7 The image method
165(30)
Appendix A5.1 Validity of the diffusion approximation in an infinite medium
166(2)
Appendix A5.2 Radiative transfer equation
168(1)
A5.2.1 Total intensity
168(2)
A5.2.2 Diffuse intensity
170(2)
A5.2.3 Boundary conditions
172(3)
A5.2.4 Slab illuminated by an extended source
175(1)
A5.2.5 Semi-infinite medium illuminated by a collimated beam
176(1)
Appendix A5.3 Multiple scattering in a finite medium
177(1)
A5.3.1 Multiple scattering in a half-space: the Milne problem
177(3)
A5.3.2 Diffusion in a finite medium
180(2)
Appendix A5.4 Spectral determinant
182(2)
Appendix A5.5 Diffusion in a domain of arbitrary shape -- Weyl expansion
184(3)
Appendix A5.6 Diffusion on graphs
187(1)
A5.6.1 Spectral determinant on a graph
187(4)
A5.6.2 Examples
191(2)
A5.6.3 Thermodynamics, transport and spectral determinant
193(2)
6 Dephasing
195(75)
6.1 Dephasing and multiple scattering
195(4)
6.1.1 Generalities
195(1)
6.1.2 Mechanisms for dephasing: introduction
196(3)
6.1.3 The Goldstone mode
199(1)
6.2 Magnetic field and the Cooperon
199(4)
6.3 Probability of return to the origin in a uniform magnetic field
203(2)
6.4 Probability of return to the origin for an Aharonov--Bohm flux
205(5)
6.4.1 The ring
206(2)
6.4.2 The cylinder
208(2)
6.5 Spin-orbit coupling and magnetic impurities
210(16)
6.5.1 Transition amplitude and effective interaction potential
210(2)
6.5.2 Total scattering time
212(2)
6.5.3 Structure factor
214(5)
6.5.4 The Difuson
219(2)
6.5.5 The Cooperon
221(2)
6.5.6 The diffusion probability
223(1)
6.5.7 The Cooperon X
224(2)
6.6 Polarization of electromagnetic waves
226(8)
6.6.1 Elastic mean free path
227(1)
6.6.2 Structure factor
228(3)
6.6.3 Classical intensity
231(2)
6.6.4 Coherent backscattering
233(1)
6.7 Dephasing and motion of scatterers
234(4)
6.7.1 General expression for the phase shift
234(3)
6.7.2 Dephasing associated with the Brownian motion of the scatterers
237(1)
6.8 Dephasing or decoherence?
238(32)
Appendix A6.1 Aharonov--Bohm effect in an infinite plane
240(2)
Appendix A6.2 Functional representation of the diffusion equation
242(1)
A6.2.1 Functional representation
242(2)
A6.2.2 Brownian motion and magnetic field
244(3)
Appendix A6.3 The Cooperon in a time-dependent field
247(4)
Appendix A6.4 Spin-orbit coupling and magnetic impurities, a heuristic point of view
251(1)
A6.4.1 Spin-orbit coupling
251(3)
A6.4.2 Magnetic impurities
254(2)
Appendix A6.5 Decoherence in multiple scattering of light by cold atoms
256(1)
A6.5.1 Scattering amplitude and atomic collision time
256(1)
A6.5.2 Elementary atomic vertex
257(5)
A6.5.3 Structure factor
262(8)
7 Electronic transport
270(50)
7.1 Introduction
270(3)
7.2 Incoherent contribution to conductivity
273(6)
7.2.1 Drude-Boltzmann approximation
273(3)
7.2.2 The multiple scattering regime: the Diffuson
276(2)
7.2.3 Transport time and vertex renormalization
278(1)
7.3 Cooperon contribution
279(2)
7.4 The weak localization regime
281(5)
7.4.1 Dimensionality effect
282(2)
7.4.2 Finite size conductors
284(1)
7.4.3 Temperature dependence
285(1)
7.5 Weak localization in a magnetic field
286(6)
7.5.1 Negative magnetoresistance
286(4)
7.5.2 Spin-orbit coupling and magnetic impurities
290(2)
7.6 Magnetoresistance and Aharonov--Bohm flux
292(28)
7.6.1 Ring
293(1)
7.6.2 Long cylinder: the Sharvin--Sharvin effect
294(1)
7.6.3 Remark on the Webb and Sharvin--Sharvin experiments: φ0 versus φ0/2
295(1)
7.6.4 The Aharonov--Bohm effect in an infinite plane
296(1)
Appendix A7.1 Kubo formulae
296(1)
A7.1.1 Conductivity and dissipation
296(5)
A7.1.2 Density-density response function
301(1)
Appendix A7.2 Conductance and transmission
302(1)
A7.2.1 Introduction: Landauer formula
302(3)
A7.2.2 From Kubo to Landauer
305(2)
A7.2.3 Average conductance and transmission
307(4)
A7.2.4 Boundary conditions and impedance matching
311(2)
A7.2.5 Weak localization correction in the Landauer formalism
313(1)
A7.2.6 Landauer formalism for waves
314(1)
Appendix A7.3 Real space description of conductivity
315(2)
Appendix A7.4 Weak localization correction and anisotropic collisions
317(3)
8 Coherent backscattering of light
320(34)
8.1 Introduction
320(1)
8.2 The geometry of the albedo
321(3)
8.2.1 Definition
321(1)
8.2.2 Albedo of a diffusive medium
322(2)
8.3 The average albedo
324(6)
8.3.1 Incoherent albedo: contribution of the Diffuson
324(2)
8.3.2 The coherent albedo: contribution of the Cooperon
326(4)
8.4 Time dependence of the albedo and study of the triangular cusp
330(3)
8.5 Effect of absorption
333(1)
8.6 Coherent albedo and anisotropic collisions
334(2)
8.7 The effect of polarization
336(3)
8.7.1 Depolarization coefficients
336(1)
8.7.2 Coherent albedo of a polarized wave
337(2)
8.8 Experimental results
339(8)
8.8.1 The triangular cusp
340(1)
8.8.2 Decrease of the height of the cone
341(2)
8.8.3 The role of absorption
343(4)
8.9 Coherent backscattering at large
347(7)
8.9.1 Coherent backscattering and the "glory" effect
347(1)
8.9.2 Coherent backscattering and opposition effect in astrophysics
348(1)
8.9.3 Coherent backscattering by cold atomic gases
349(3)
8.9.4 Coherent backscattering effect in acoustics
352(2)
9 Diffusing wave spectroscopy
354(16)
9.1 Introduction
354(1)
9.2 Dynamic correlations of intensity
355(2)
9.3 Single scattering: quasi-elastic light scattering
357(1)
9.4 Multiple scattering: diffusing wave spectroscopy
358(1)
9.5 Influence of the geometry on the time correlation function
359(11)
9.5.1 Reflection by a semi-infinite medium
359(2)
9.5.2 Comparison between Gr1(T) and αc(θ)
361(2)
9.5.3 Reflection from a finite slab
363(1)
9.5.4 Transmission
364(3)
Appendix A9.1 Collective motion of scatterers
367(3)
10 Spectral properties of disordered metals
370(26)
10.1 Introduction
370(4)
10.1.1 Level repulsion and integrability
371(2)
10.1.2 Energy spectrum of a disordered metal
373(1)
10.2 Characteristics of spectral correlations
374(2)
10.3 Poisson distribution
376(1)
10.4 Universality of spectral correlations: random matrix theory
377(8)
10.4.1 Level repulsion in 2 × 2 matrices
377(3)
10.4.2 Distribution of eigenvalues for N × N matrices
380(2)
10.4.3 Spectral properties of random matrices
382(3)
10.5 Spectral correlations in the diffusive regime
385(11)
10.5.1 Two-point correlation function
386(4)
10.5.2 The ergodic limit
390(1)
10.5.3 Free diffusion limit
391(3)
Appendix A10.1 The GOE--GUE transition
394(2)
11 Universal conductance fluctuations
396(31)
11.1 Introduction
396(3)
11.2 Conductivity fluctuations
399(7)
11.2.1 Fluctuations of the density of states
402(3)
11.2.2 Fluctuations of the diffusion coefficient
405(1)
11.3 Universal conductance fluctuations
406(3)
11.4 Effect of external parameters
409(18)
11.4.1 Energy dependence
409(1)
11.4.2 Temperature dependence
409(2)
11.4.3 Phase coherence and the mesoscopic regime
411(4)
11.4.4 Magnetic field dependence
415(3)
11.4.5 Motion of scatterers
418(1)
11.4.6 Spin-orbit coupling and magnetic impurities
419(3)
Appendix A11.1 Universal conductance fluctuations and anisotropic collisions
422(2)
Appendix A11.2 Conductance fluctuations in the Landauer formalism
424(3)
12 Correlations of speckle patterns
427(38)
12.1 What is a speckle pattern?
427(1)
12.2 How to analyze a speckle pattern
428(5)
12.3 Average transmission coefficient
433(2)
12.4 Angular correlations of the transmitted light
435(11)
12.4.1 Short range C(1) correlations
435(4)
12.4.2 Long range correlations C(2)
439(2)
12.4.3 Two-crossing contribution and C(3) correlation
441(4)
12.4.4 Relation with universal conductance fluctuations
445(1)
12.5 Speckle correlations in the time domain
446(6)
12.5.1 Time dependent correlations C(1)(t) and C(2)(t)
447(3)
12.5.2 Time dependent correlation C(3)(t)
450(2)
12.6 Spectral correlations of speckle patterns
452(1)
12.7 Distribution function of the transmission coefficients
453(12)
12.7.1 Rayleigh distribution law
454(1)
12.7.2 Gaussian distribution of the transmission coefficient Ta
455(1)
12.7.3 Gaussian distribution of the electrical conductance
456(2)
Appendix A12.1 Spatial correlations of light intensity
458(1)
A12.1.1 Short range correlations
459(2)
A12.1.2 Long range correlations
461(4)
13 Interactions and diffusion
465(51)
13.1 Introduction
465(1)
13.2 Screened Coulomb interaction
466(2)
13.3 Hartree--Fock approximation
468(2)
13.4 Density of states anomaly
470(13)
13.4.1 Static interaction
470(5)
13.4.2 Tunnel conductance and density of states anomaly
475(3)
13.4.3 Dynamically screened interaction
478(3)
13.4.4 Capacitive effects
481(2)
13.5 Correction to the conductivity
483(4)
13.6 Lifetime of a quasiparticle
487(11)
13.6.1 Introduction: Landau theory and disorder
487(1)
13.6.2 Lifetime at zero temperature
487(7)
13.6.3 Quasiparticle lifetime at finite temperature
494(1)
13.6.4 Quasiparticle lifetime at the Fermi level
495(3)
13.7 Phase coherence
498(18)
13.7.1 Introduction
498(1)
13.7.2 Phase coherence in a fluctuating electric field
499(3)
13.7.3 Phase coherence time in dimension d = 1
502(4)
13.7.4 Phase coherence and quasiparticle relaxation
506(3)
13.7.5 Phase coherence time in dimensions d = 2 and d = 3
509(1)
13.7.6 Measurements of the phase coherence time τeeφ
510(2)
Appendix A13.1 Screened Coulomb potential in confined geometry
512(2)
Appendix A13.2 Lifetime in the absence of disorder
514(2)
14 Orbital magnetism and persistent currents
516(31)
14.1 Introduction
516(2)
14.2 Free electron gas in a uniform field
518(6)
14.2.1 A reminder: the case of no disorder
518(3)
14.2.2 Average magnetization
521(1)
14.2.3 Fluctuations of the magnetization
522(2)
14.3 Effect of Coulomb interaction
524(4)
14.3.1 Hartree--Fock approximation
525(1)
14.3.2 Cooper renormalization
526(2)
14.3.3 Finite temperature
528(1)
14.4 Persistent current in a ring
528(8)
14.4.1 Clean one-dimensional ring: periodicity and parity effects
529(5)
14.4.2 Average current
534(2)
14.5 Diffusive limit and persistent current
536(11)
14.5.1 Typical current of a disordered ring
537(2)
14.5.2 Effect of the Coulomb interaction on the average current
539(3)
14.5.3 Persistent current and spin-orbit coupling
542(1)
14.5.4 A brief overview of experiments
543(2)
Appendix A14.1 Average persistent current in the canonical ensemble
545(2)
15 Formulary
547(14)
15.1 Density of states and conductance
547(1)
15.2 Fourier transforms: definitions
548(1)
15.3 Collisionless probability P0(r, r', t)
548(1)
15.4 Probability P(r, r', t)
548(3)
15.5 Wigner--Eckart theorem and 3j-symbols
551(1)
15.6 Miscellaneous
552(6)
15.7 Poisson formula
558(1)
15.8 Temperature dependences
558(1)
15.9 Characteristic times introduced in this book
559(2)
References 561(21)
Index 582