Atnaujinkite slapukų nuostatas

El. knyga: Metaheuristic Algorithms: Theory and Practice

  • Formatas: 470 pages
  • Išleidimo metai: 03-Apr-2024
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781040000342
  • Formatas: 470 pages
  • Išleidimo metai: 03-Apr-2024
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781040000342

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems such as software engineering problems, image recognition problems, problems in video networks, and problems in the ocean.



This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans.

In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods.

Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics.

1. Introduction
2. Information Feedback Models (IFM) and Its Applications
3. Learning-Based Intelligent Optimization Algorithms
4. Dynamic Multi-objective Optimization
5. Multimodal Multi-objective Optimization
6. Neural Architecture Search
7. Fuzzing
8. Application of Intelligent Algorithms in the Ocean
9. Image processing

Gai-Ge Wang is currently a Professor with the Ocean University of China, Qingdao, China. His entire published works have been cited more 15,000 times (Google Scholar). The latest Google H-index and i10-index are 62 and 131, respectively. Of his 81 Highly Cited Papers, 15 were selected by Web of Science and 66 selected by Scopus. His research interests include swarm intelligence, evolutionary computation, and big data optimization.

Xiaoqi Zhao is currently working at Qingdao University of Technology, China. She graduated from Ocean University of China with a PhD degree and her main research interests are information security, fuzz testing and intelligent optimization.

Keqin Li is a SUNY Distinguished Professor (USA) and a National Distinguished Professor (China). He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a Fellow of the American Association for the Advancement of Science (AAAS), and a Fellow of the Asia-Pacific Artificial Intelligence Association (AAIA). He is a Member of Academia Europaea (Academician of the Academy of Europe).