Atnaujinkite slapukų nuostatas

El. knyga: Metal-based Anticancer Agents

Edited by (University of Vienna), Edited by (Pierre et Marie Curie Univeristy, France), Edited by (Cardiff University, UK)
  • Formatas: 355 pages
  • Serija: Metallobiology Volume 14
  • Išleidimo metai: 05-Apr-2019
  • Leidėjas: Royal Society of Chemistry
  • Kalba: eng
  • ISBN-13: 9781788016452
  • Formatas: 355 pages
  • Serija: Metallobiology Volume 14
  • Išleidimo metai: 05-Apr-2019
  • Leidėjas: Royal Society of Chemistry
  • Kalba: eng
  • ISBN-13: 9781788016452

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Metal-based anticancer drugs, notably platinum-based such as cisplatin, have a tremendous clinical impact: it is estimated that at least half of all cancer patients are treated with a platinum-based drug. Metal-based Anticancer Agents introduces the main classes of metallodrugs, their possible different biological targets, the major and concepts and methods. The book also provides an overview of the most significant experimental and conceptual progresses made during the last years in the areas of inorganic medicinal chemistry and metallodrug discovery and development. This book will be a valuable resource for experts in the field but also for those wishing to extend their expertise to metal-based cancer drugs.

Metal-based anticancer drugs are among the most successful therapeutic agents, as evidenced by the frequent prescription of selected platinum and arsenic compounds to patients. Metal-based Anticancer Agents covers the interdisciplinary world of inorganic drug discovery and development by introducing the most prominent compound classes based on different transition metals, discussing emerging concepts and enabling methods, as well as presenting key pre-clinical and clinical aspects. Recent progress on the unique features of next-generation targeted metal-based anticancer agents, including supramolecular coordination complexes used for both therapy and drug delivery, promise a bright future beyond the benefits of pure cytotoxic activity. With contributions from global leaders in the field, this book will serve as a useful reference to established researchers as well as a practical guide to those new to metallodrugs, and postgraduate students of medicinal chemistry and metallobiology.

Metal-based Anticancer Agents covers the interdisciplinary world of inorganic drug discovery and development by introducing the most prominent compound classes based on different transition metals, discussing emerging concepts, enabling methods, and key pre-clinical and clinical aspects.
Part I The Main Classes of Metal-based Anticancer Agents and their Modes of Action
Chapter 1 Enhancing the Therapeutic Potential of Platinum-based Anticancer Agents by Incorporating Clinically Approved Drugs as Ligands
3(28)
Reece G. Kenny
Celine J. Marmion
1.1 Introduction
3(3)
1.2 Platinum Complexes Incorporating Clinically Approved Drugs or Derivatives Thereof as Ligands
6(16)
1.2.1 Vorinostat and Belinostat Derivatives as Ligands
6(3)
1.2.2 Valproic Acid and Phenylbutyric Acid as Ligands
9(6)
1.2.3 Indomethacin, Ibuprofen and Aspirin as Ligands
15(3)
1.2.4 Ethacrynic Acid as a Ligand
18(1)
1.2.5 Dichloroacetate or Dichloroacetate Derivatives as Ligands
19(3)
1.3 Platinum Complexes Incorporating More Than One Clinically Approved Drug as a Ligand
22(2)
1.4 Conclusions
24(7)
Abbreviations
25(1)
Acknowledgements
25(1)
References
26(5)
Chapter 2 Ruthenium, Osmium and Iridium in the Fight Against Cancer
31(31)
Isolda Romero-Canelon
2.1 Introduction
31(1)
2.2 Structural Diversity
32(8)
2.2.1 Octahedral Coordination Complexes
32(2)
2.2.2 Organometallic Arene `Piano-stool' Complexes
34(6)
2.2.3 Other Relevant Coordination Spheres
40(1)
2.3 Mechanisms of Action of Ru, Os and Ir Metal Complexes
40(12)
2.3.1 DNA as a Target
41(1)
2.3.2 Redox Modulation and Mitochondrial Targeting
42(10)
2.4 Challenges in the Investigations of Mechanisms of Action at the Cellular Level
52(1)
2.5 Is There a Bright Future for Ruthenium, Osmium and Iridium Complexes in the Fight Against Cancer?
53(9)
Abbreviations
54(1)
Acknowledgements
55(1)
References
55(7)
Chapter 3 Iron Compounds as Anticancer Agents
62(29)
Anne Vessieres
3.1 Introduction
62(3)
3.2 Study of Ferrocene Complexes
65(11)
3.2.1 Background
65(2)
3.2.2 The Ferrocifen Family
67(2)
3.2.3 Ferrocene Complexes of Natural Products
69(3)
3.2.4 Ferrocenyl Complexes of Histone Deacetylase Inhibitors (HDACi)
72(1)
3.2.5 Ferrocenyl Derivatives of Nucleosides
73(1)
3.2.6 N-Alkylaminoferrocenes
74(1)
3.2.7 Ferrocenyl Alkylpyridinium Cations Used for Photodynamic Therapy (PDT)
75(1)
3.3 Coordination Complexes of Iron(II) and Iron(III)
76(2)
3.4 Molecules Active via Chelation with Iron
78(4)
3.4.1 Bleomycins (BLMs)
78(2)
3.4.2 Iron Chelators
80(2)
3.5 Conclusion
82(9)
Abbreviations
83(1)
Acknowledgements
83(1)
References
83(8)
Chapter 4 Recent Advances in Anticancer Copper Compounds
91(29)
Andrew Kellett
Zara Molphy
Vickie McKee
Creina Slator
4.1 Introduction---Copper Complexes as Redox-active Cytotoxins
91(1)
4.2 Copper Enzymes and Transport Proteins: Pathways for Developing Redox-active Therapeutics
92(5)
4.3 NCI-60 Screening of Anticancer Copper Complexes
97(4)
4.4 Mechanistic Analysis of Cytotoxic Copper Complexes
101(12)
4.4.1 An Overview of Cell Death Mechanisms
101(3)
4.4.2 Copper-mediated ROS Production
104(2)
4.4.3 Mitochondrial Toxicity
106(1)
4.4.4 DNA-targeted Copper Complexes
107(4)
4.4.5 Oxidative DNA Damage
111(2)
4.5 Summary and Outlook
113(7)
Abbreviations
113(1)
Acknowledgements
114(1)
References
115(5)
Chapter 5 Anticancer Gold Compounds
120(23)
Di Hu
Chun-Nam Lok
Chi-Ming Che
5.1 The Development of Gold Compounds in Medicine
120(1)
5.2 Anticancer Gold(I) Complexes
121(6)
5.2.1 Antiarthritic Gold(I) Drugs with Anticancer Activities
121(1)
5.2.2 Gold(I)-Phosphane Complexes
122(1)
5.2.3 Gold(I)-Thiourea Complexes
123(1)
5.2.4 Gold(I)-NHC Complexes
124(2)
5.2.5 Gold(I)-Alkynyl Complexes
126(1)
5.3 Anticancer Gold(II) Complexes
127(9)
5.3.1 Gold(II) Porphyrin
127(2)
5.3.2 Coordination Gold(II) Complexes with Various Ligands
129(2)
5.3.3 Cyclometallated Gold(II) Complexes
131(5)
5.4 Nano Formulation of Gold Complexes with Improved Anticancer Potency
136(1)
5.5 Conclusions and Outlook
137(6)
Abbreviations
138(1)
Acknowledgements
139(1)
References
139(4)
Chapter 6 Heterometallic Complexes as Anticancer Agents
143(26)
Natalia Curado
Maria Contel
6.1 Introduction
143(1)
6.2 Heterometallic Compounds Containing Ferrocenyl-derived Molecules
144(4)
6.3 Heterometallic Compounds Containing Ruthenium(II)-Arene Fragments
148(5)
6.3.1 Ruthenium-Gold Compounds
149(2)
6.3.2 Ruthenium-Platinum Compounds
151(1)
6.3.3 Ruthenium-Cobalt Compounds
152(1)
6.4 Heterometallic Compounds Containing Titanocenes
153(4)
6.4.1 Titanocene-Ruthenium Compounds
153(1)
6.4.2 Titanocene-Gold Compounds
153(4)
6.5 Other Heterometallic Compounds
157(5)
6.5.1 Gold-containing Compounds (Gold-Platinum, Gold-Ruthenium, Gold-Cobalt, Gold-Silver, and Gold-Copper]
157(2)
6.5.2 Ruthenium-containing Compounds (Ruthenium-Platinum, Ruthenium-Nickel, and Ruthenium-Copper)
159(1)
6.5.3 Theranostic Compounds (Ruthenium-M, M = Gold, Osmium, Rhodium, Gadolinium; Gadolinium-Platinum; and Rhenium-Gold)
160(2)
6.5.4 Other (Cobalt-based and Copper-Zinc)
162(1)
6.6 Conclusion
162(7)
Acknowledgement
163(1)
References
163(6)
Chapter 7 Vanadium Compounds as Enzyme Inhibitors with a Focus on Anticancer Effects
169(27)
Debbie C. Crans
Noah E. Barkley
Liliana Montezinho
M. Marganda Castro
7.1 Introduction
169(3)
7.2 Phosphorylation in Tumorigenesis and Signaling Pathways
172(6)
7.3 Inhibition of Phosphorylases and Kinases by Vanadate and Vanadium-containing Compounds
178(6)
7.3.1 Phosphatases and Their Inhibition by Vanadate and Vanadium Compounds
178(2)
7.3.2 Kinases and Their Inhibition by Vanadate and Vanadium Compounds
180(1)
7.3.3 Additional Phosphorylases and Their Inhibition by Vanadate and Vanadium Compounds
180(1)
7.3.4 Mitogen-activated Protein Kinase and Phosphoinsitide 3-Kinase Signaling Pathways
181(3)
7.4 The Effects of Vanadate and VCs in Cellular Systems
184(3)
7.5 In Vivo Studies of Vanadium Compounds in Animal Model Systems
187(1)
7.6 Conclusions
188(8)
Acknowledgements
188(1)
References
188(8)
Chapter 8 Arsenic-based Anticancer Agents
196(21)
Stephane Gibaud
8.1 Introduction and General Overview of Arsenic Anticancer Drugs
196(5)
8.2 Mechanism of Action
201(6)
8.2.1 Transport Across Biomembranes
201(1)
8.2.2 Reactivity with Thiols
201(1)
8.2.3 Biological Effects
202(5)
8.3 Arsenic in the Treatment of Acute Promyelocytic Leukemia
207(1)
8.4 Arsenical Drugs and Glioma
207(1)
8.5 Conclusion
208(9)
Abbreviations
209(1)
References
210(7)
Part II Enabling Concepts in Metallodrug Discovery
Chapter 9 Supramolecular Metal-based Structures for Applications in Cancer Therapy
217(29)
Margot N. Wenzel
Benjamin Woods
Angela Casini
9.1 Introduction
217(1)
9.2 Supramolecular Coordination Complexes
218(6)
9.2.1 Synthesis of 2D (Metallacycles) and 3D (Metallacages) SCCs
218(2)
9.2.2 Synthesis of Heteroleptic, Interlocked and Heterometallic Cages
220(3)
9.2.3 Synthesis of Helicates
223(1)
9.3 SCCs as Anticancer Agents
224(5)
9.3.1 Cytotoxic PdII and PtII SCCs
225(1)
9.3.2 Cytotoxic Ruthenium(II)-Arene SCCs
226(1)
9.3.3 DNA-targeted SCCs
227(2)
9.4 SCCs as Drug Delivery Systems
229(6)
9.4.1 SCCs as Drug Delivery Systems for Anticancer Agents
230(4)
9.4.2 Prodrug-based SCCs
234(1)
9.5 In Vivo Studies on Anticancer SCCs
235(2)
9.6 Conclusions and Perspectives
237(9)
Abbreviations
239(1)
Acknowledgements
239(1)
References
240(6)
Chapter 10 Enabling Methods to Elucidate the Effects of Metal-based Anticancer Agents
246(27)
D. Kreutz
C. Gemer
S. M. Meier-Menches
10.1 Introduction
246(2)
10.2 Assessing Activation Mechanisms of Metal-based Anticancer Agents
248(6)
10.2.1 DI-ESI-MS
249(3)
10.2.2 LC-ESI-MS
252(1)
10.2.3 CZE-ESI-MS
253(1)
10.3 Identifying Targets of Metal-based Anticancer Agents
254(5)
10.4 Elucidating Modes of Action of Metal-based Anticancer Agents
259(4)
10.4.1 Transcriptional Profiling
259(1)
10.4.2 Proteome Profiling
260(3)
10.5 Conclusion
263(10)
Abbreviations
264(1)
Acknowledgements
265(1)
References
265(8)
Part III Preclinical and Clinical Evaluation
Chapter 11 Metal-based Radiotherapeutics
273(35)
Christian A. Mason
Lukas M. Carter
Jason S. Lewis
11.1 Introduction
273(14)
11.1.1 The Radiotherapeutic Armamentarium
274(6)
11.1.2 Radiobiologic Comparisons
280(2)
11.1.3 Selection Criteria for Therapeutic Radionuclides
282(4)
11.1.4 The Role of Imaging in the Application of Endoradiotherapy
286(1)
11.2 Advances in Preclinical Radiopharmaceutical Development
287(8)
11.2.1 Preclinical Developments in Beta Therapies
287(4)
11.2.2 Preclinical Developments in Alpha Therapies
291(3)
11.2.3 Preclinical Developments in Auger Electron and Conversion Electron Therapies
294(1)
11.3 Advances in Clinical Radiopharmaceuticals
295(5)
11.3.1 Beta Therapies in the Clinic
295(2)
11.3.2 Alpha Therapies in the Clinic
297(3)
11.4 Future Perspectives
300(8)
Abbreviations
301(1)
Acknowledgements
301(1)
References
302(6)
Chapter 12 Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs
308(40)
Isabella Potsch
Dina Baier
Bemhard K. Keppler
Walter Berger
12.1 Introduction
308(5)
12.2 Strategies and Challenges in the Clinical Development of Novel (Metal) Drugs in Oncology
313(7)
12.2.1 Factors Causing Failure of Anticancer Metal. Drug Development
313(5)
12.2.2 Anticancer Metal Drugs Need a Defined Target
318(2)
12.3 Strategies for Clinical Development of Novel Anticancer Metal Drugs
320(2)
12.4 Current Status of Novel Anticancer Metal Drugs in Clinical Evaluation
322(12)
12.4.1 Platinum
322(4)
12.4.2 Ruthenium
326(2)
12.4.3 Gold
328(1)
12.4.4 Gallium
329(3)
12.4.5 Other Metals
332(2)
12.5 Metal Complexes as Immunological Drugs and Possible Partners for Immunotherapy
334(2)
12.5.1 Metal Drugs and Impact on Cancer Immune Recognition
334(1)
12.5.2 Clinical Situation and Approvals for Combinations of Metal Drugs with Checkpoint Inhibitors
335(1)
12.6 Conclusion and Outlook
336(12)
References
336(12)
Subject Index 348