Atnaujinkite slapukų nuostatas

Method of Moments in Electromagnetics 2nd New edition [Kietas viršelis]

(Tripoint Industries Inc., Harvest, Alabama, USA)
  • Formatas: Hardback, 450 pages, aukštis x plotis: 234x156 mm, weight: 782 g, Meetings: ICASSP Meeting, May.in Florence , SIAM July, Chicago , Joint Math January, San Antonio; 10 Tables, black and white; 192 Illustrations, black and white
  • Išleidimo metai: 08-Jul-2014
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-10: 148223579X
  • ISBN-13: 9781482235791
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 450 pages, aukštis x plotis: 234x156 mm, weight: 782 g, Meetings: ICASSP Meeting, May.in Florence , SIAM July, Chicago , Joint Math January, San Antonio; 10 Tables, black and white; 192 Illustrations, black and white
  • Išleidimo metai: 08-Jul-2014
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-10: 148223579X
  • ISBN-13: 9781482235791
Kitos knygos pagal šią temą:
"This book discusses the use of integral equations in electromagnetics, covering theory only when necessary to explain how to apply it to solve practical problems. To introduce the method of moments, coupled surface integral equations are derived and solved in several domains of pragmatic concern: two-dimensional problems, thin wires, bodies of revolution, and generalized three-dimensional problems. Focusing on real-world implementation, the Second Edition includes a treatment of electromagnetic scattering from objects that may be either conducting or comprise a composite conducting/dielectric (material) geometry. "--

The graduate textbook introduces the Method of Moments in the context of electrostatic field problems, derives coupled surface integral equations of radiation and scattering, and applies the Moment Method to thin wires, bodies of revolution, electromagnetic interference, electronics packaging, antenna impedance, radar cross section prediction, and the calculation of near fields. The second edition breaks the material on the solution of matrix equations into its own chapter, and adds material on dielectric objects. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Now Covers Dielectric Materials in Practical Electromagnetic Devices

The Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts.

New to the Second Edition

  • Expanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multiple dielectric regions with interfaces and junctions
  • Updated topics to reflect current technology
  • More material on the calculation of near fields
  • Reformatted equations and improved figures

Providing a bridge between theory and software implementation, the book incorporates sufficient background material and offers nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations that can be used to treat problems with conducting and dielectric regions. Subsequent chapters solve these integral equations for progressively more difficult problems involving thin wires, bodies of revolution, and two- and three-dimensional bodies. After reading this book, students and researchers will be well equipped to understand more advanced MOM topics.

Preface to the Second Edition xv
Preface xvii
Acknowledgments xxi
About the Author xxiii
1 Computational Electromagnetics 1(6)
1.1 CEM Algorithms
1(3)
1.1.1 Low-Frequency Methods
2(1)
1.1.1.1 Finite Difference Time Domain Method
2(1)
1.1.1.2 Finite Element Method
2(1)
1.1.1.3 Method of Moments
3(1)
1.1.2 High-Frequency Methods
3(4)
1.1.2.1 Geometrical Theory of Diffraction
3(1)
1.1.2.2 Physical Optics
3(1)
1.1.2.3 Physical Theory of Diffraction
4(1)
1.1.2.4 Shooting and Bouncing Rays
4(1)
References
4(3)
2 The Method of Moments 7(18)
2.1 Electrostatic Problems
7(16)
2.1.1 Charged Wire
8(5)
2.1.1.1 Matrix Element Evaluation
10(1)
2.1.1.2 Solution
10(3)
2.1.2 Charged Plate
13(4)
2.1.2.1 Matrix Element Evaluation
14(1)
2.1.2.2 Solution
14(3)
2.2 The Method of Moments
17(2)
2.2.1 Point Matching
18(1)
2.2.2 Galerkin's Method
19(1)
2.3 Common 2D Basis Functions
19(7)
2.3.1 Pulse Functions
19(1)
2.3.2 Piecewise Triangular Functions
20(1)
2.3.3 Piecewise Sinusoidal Functions
21(1)
2.3.4 Entire-Domain Functions
22(1)
2.3.5 Number of Basis Functions
22(1)
References
23(2)
3 Radiation and Scattering 25(36)
3.1 Maxwell's Equations
25(1)
3.2 Electromagnetic Boundary Conditions
26(1)
3.3 Formulations for Radiation
26(5)
3.3.1 Three-Dimensional Green's Function
28(1)
3.3.2 Two-Dimensional Green's Function
29(2)
3.4 Vector Potentials
31(6)
3.4.1 Magnetic Vector Potential
31(1)
3.4.1.1 Three-Dimensional Magnetic Vector Potential
32(1)
3.4.1.2 Two-Dimensional Magnetic Vector Potential
32(1)
3.4.2 Electric Vector Potential
32(1)
3.4.2.1 Three-Dimensional Electric Vector Potential
33(1)
3.4.2.2 Two-Dimensional Electric Vector Potential
33(1)
3.4.3 Total Fields
33(1)
3.4.4 Comparison of Radiation Formulas
34(3)
3.5 Near and Far Field
37(7)
3.5.1 Three-Dimensional Near Field
37(2)
3.5.2 Two-Dimensional Near Field
39(2)
3.5.3 Three-Dimensional Far Field
41(2)
3.5.4 Two-Dimensional Far Field
43(1)
3.6 Formulations for Scattering
44(14)
3.6.1 Surface Equivalent
44(6)
3.6.2 Surface Integral Equations
50(6)
3.6.2.1 Interior Resonance Problem
51(1)
3.6.2.2 Discretization and Testing
52(2)
3.6.2.3 Modification of Matrix Elements
54(2)
3.6.3 Enforcement of Boundary Conditions
56(1)
3.6.3.1 EFIE-CFIE-PMCHWT Approach
56(1)
3.6.4 Physical Optics Equivalent
57(1)
References
58(3)
4 Solution of Matrix Equations 61(18)
4.1 Direct Methods
61(5)
4.1.1 Gaussian Elimination
61(2)
4.1.1.1 Pivoting
63(1)
4.1.2 LU Decomposition
63(2)
4.1.3 Condition Number
65(1)
4.2 Iterative Methods
66(8)
4.2.1 Conjugate Gradient
66(2)
4.2.2 Biconjugate Gradient
68(1)
4.2.3 Conjugate Gradient Squared
69(1)
4.2.4 Biconjugate Gradient Stabilized
70(1)
4.2.5 GMRES
71(2)
4.2.6 Stopping Criteria
73(1)
4.2.7 Preconditioning
73(1)
4.3 Software for Linear Systems
74(1)
4.3.1 BLAS
74(1)
4.3.2 LAPACK
75(1)
4.3.3 MATLAB®
75(1)
References
75(4)
5 Thin Wires 79(46)
5.1 Thin Wire Approximation
79(2)
5.2 Thin Wire Excitations
81(3)
5.2.1 Delta-Gap Source
82(1)
5.2.2 Magnetic Frill
82(1)
5.2.3 Plane Wave
83(1)
5.3 Halldn's Equation
84(5)
5.3.1 Symmetric Problems
86(2)
5.3.1.1 Solution Using Pulse Functions and Point Matching
87(1)
5.3.2 Asymmetric Problems
88(1)
5.3.2.1 Solution Using Pulse Functions and Point Matching
89(1)
5.4 Pocklington's Equation
89(2)
5.4.1 Solution Using Pulse Functions and Point Matching
90(1)
5.5 Thin Wires of Arbitrary Shape
91(6)
5.5.1 Method of Moments Discretization
91(1)
5.5.2 Solution Using Triangle Basis and Testing Functions
92(2)
5.5.2.1 Non-Self Terms
93(1)
5.5.2.2 Self Terms
93(1)
5.5.3 Solution Using Sinusoidal Basis and Testing Functions
94(2)
5.5.3.1 Self Terms
94(2)
5.5.4 Lumped and Distributed Impedances
96(1)
5.6 Examples
97(25)
5.6.1 Comparison of Thin Wire Models
97(7)
5.6.1.1 Input Impedance
97(4)
5.6.1.2 Induced Current Distribution
101(3)
5.6.2 Half-Wavelength Dipole
104(3)
5.6.3 Circular Loop Antenna
107(4)
5.6.4 Folded Dipole Antenna
111(2)
5.6.5 Two-Wire Transmission Line
113(4)
5.6.6 Yagi Antenna for 146 MHz
117(5)
References
122(3)
6 Two-Dimensional Problems 125(60)
6.1 Conducting Objects
125(33)
6.1.1 EFIE: TM Polarization
125(7)
6.1.1.1 Solution Using Pulse Functions
126(2)
6.1.1.2 Solution Using Triangle Functions
128(4)
6.1.2 Generalized EFIE: TM Polarization
132(1)
6.1.2.1 MOM Discretization
132(1)
6.1.2.2 Solution Using Triangle Functions
132(1)
6.1.3 EFIE: TE Polarization
133(7)
6.1.3.1 Pulse Function Solution
135(5)
6.1.4 Generalized EFIE: TE Polarization
140(2)
6.1.4.1 MOM Discretization
140(1)
6.1.4.2 Solution Using Triangle Functions
141(1)
6.1.5 nMFIE: TM Polarization
142(2)
6.1.5.1 Solution Using Triangle Functions
143(1)
6.1.6 nMFIE: TE Polarization
144(2)
6.1.6.1 Solution Using Triangle Functions
145(1)
6.1.7 Examples
146(12)
6.1.7.1 Conducting Cylinder: TM Polarization
146(6)
6.1.7.2 Conducting Cylinder: TE Polarization
152(6)
6.2 Dielectric and Composite Objects
158(26)
6.2.1 Basis Function Orientation
158(1)
6.2.2 EFIE: TM Polarization
159(1)
6.2.2.1 MOM Discretization
160(1)
6.2.3 MFIE: TM Polarization
160(1)
6.2.3.1 MOM Discretization
160(1)
6.2.4 nMFIE: TM Polarization
161(1)
6.2.4.1 MOM Discretization
161(1)
6.2.5 EFIE: TE Polarization
162(1)
6.2.5.1 MOM Discretization
162(1)
6.2.6 MFIE: TE Polarization
162(1)
6.2.6.1 MOM Discretization
162(1)
6.2.7 nMFIE: TE Polarization
162(1)
6.2.7.1 MOM Discretization
162(1)
6.2.8 Numerical Stability
163(1)
6.2.9 Examples
163(24)
6.2.9.1 Dielectric Cylinder
163(1)
6.2.9.2 Dielectric Cylinder: TM Polarization
164(6)
6.2.9.3 Dielectric Cylinder: TE Polarization
170(5)
6.2.9.4 Coated Cylinder
175(1)
6.2.9.5 Coated Cylinder: TM Polarization
175(4)
6.2.9.6 Coated Cylinder: TE Polarization
179(1)
6.2.9.7 Effect of Number of Segments per Wave-length on Accuracy
180(4)
References
184(1)
7 Bodies of Revolution 185(68)
7.1 BOR Surface Description
185(1)
7.2 Expansion of Surface Currents
186(1)
7.3 EFIE
187(10)
7.3.1 L Operator
188(3)
7.3.1.1 L Matrix Elements
188(3)
7.3.2 1C Operator
191(2)
7.3.2.1 K Matrix Elements
191(2)
7.3.3 Excitation
193(4)
7.3.3.1 Plane Wave Excitation
193(4)
7.4 MFIE
197(1)
7.4.1 Excitation
197(1)
7.4.1.1 Plane Wave Excitation
197(1)
7.5 Solution
198(5)
7.5.1 Plane Wave Solution
198(2)
7.5.1.1 Currents
199(1)
7.5.2 Scattered Field
200(3)
7.5.2.1 Scattered Far Fields
200(3)
7.6 nMFIE
203(3)
7.6.1 n x L Operator
203(1)
7.6.1.1 N x K Matrix Elements
204(1)
7.6.2 n x K Operator
204(1)
7.6.2.1 nK Matrix Elements
204(1)
7.6.3 Excitation
205(4)
7.6.3.1 Plane Wave Excitation
205(1)
7.6.3.2 Plane Wave Solution
206(1)
7.7 Numerical Discretization
206(3)
7.8 Notes on Software Implementation
209(1)
7.8.1 Parallelization
209(1)
7.8.2 Convergence
209(1)
7.9 Examples
210(33)
7.9.1 Spheres
210(21)
7.9.1.1 Conducting Sphere
211(6)
7.9.1.2 Stratified Sphere
217(2)
7.9.1.3 Dielectric Sphere
219(1)
7.9.1.4 Coated Sphere
220(11)
7.9.2 EMCC Benchmark Targets
231(8)
7.9.2.1 EMCC Ogive
231(1)
7.9.2.2 EMCC Double Ogive
231(2)
7.9.2.3 EMCC Cone-Sphere
233(1)
7.9.2.4 EMCC Cone-Sphere with Gap
234(5)
7.9.3 Biconic Reentry Vehicle
239(4)
7.10 Treatment of Junctions
243(8)
7.10.1 Orientation of Basis Functions
243(2)
7.10.1.1 Longitudinal Basis Vectors
243(1)
7.10.1.2 Azimuthal Basis Vectors
244(1)
7.10.2 Examples with Junctions
245(9)
7.10.2.1 Dielectric Sphere with Septum
245(1)
7.10.2.2 Coated Sphere with Septum
245(1)
7.10.2.3 Stratified Sphere with Septum
246(2)
7.10.2.4 Monoconic Reentry Vehicle with Dielectric Nose
248(3)
References
251(2)
8 Three-Dimensional Problems 253(76)
8.1 Modeling of Three-Dimensional Surfaces
254(4)
8.1.1 Facet File
254(2)
8.1.2 Edge-Finding Algorithm
256(2)
8.1.2.1 Shared Nodes
257(1)
8.2 Expansion of Surface Currents
258(2)
8.2.1 Divergence of the RWG Function
259(1)
8.2.2 Assignment and Orientation of Basis Functions
259(1)
8.3 EFIE
260(15)
8.3.1 G Operator
260(10)
8.3.1.1 Non-Near Terms
261(1)
8.3.1.2 Near and Self Terms
261(9)
8.3.2 K Operator
270(4)
8.3.2.1 Non-Near Terms
270(1)
8.3.2.2 Near Terms
271(3)
8.3.3 Excitation
274(1)
8.3.3.1 Plane Wave Excitation
274(1)
8.3.3.2 Planar Antenna Excitation
274(1)
8.4 MFIE
275(1)
8.4.1 Excitation
276(1)
8.4.1.1 Plane Wave Excitation
276(1)
8.5 nMFIE
276(3)
8.5.1 n x K Operator
277(1)
8.5.1.1 Non-Near Terms
277(1)
8.5.1.2 Near Terms
277(1)
8.5.2 il x G Operator
277(2)
8.5.2.1 Non-Near Terms
278(1)
8.5.2.2 Near and Self Terms
278(1)
8.5.3 Excitation
279(1)
8.5.3.1 Plane Wave Excitation
279(1)
8.6 Enforcement of Boundary Conditions
279(5)
8.6.1 Classification of Edges and Junctions
279(3)
8.6.1.1 Dielectric Edges and Junctions
280(1)
8.6.1.2 Conducting Edges and Junctions
280(1)
8.6.1.3 Composite Conducting-Dielectric Junctions
281(1)
8.6.2 Reducing the Overdetermined System
282(2)
8.6.2.1 PMCHWT at Dielectric Edges and Junctions
282(1)
8.6.2.2 EFIE and CFIE at Conducting Edges and Junctions
283(1)
8.6.2.3 EFIE and CFIE at Composite Conducting Dielectric Junctions
283(1)
8.7 Notes on Software Implementation
284(6)
8.7.1 Pre-Processing and Bookkeeping
285(1)
8.7.1.1 Region and Interface Assignments
285(1)
8.7.1.2 Geometry Processing
285(1)
8.7.1.3 Assignment and Orientation of Basis Functions
285(1)
8.7.2 Matrix and Right-Hand Side Fill
286(1)
8.7.3 Parallelization
287(1)
8.7.3.1 Shared Memory Systems
287(1)
8.7.3.2 Distributed Memory Systems
287(1)
8.7.4 Triangle Mesh Considerations
288(2)
8.7.4.1 Aspect Ratio
288(1)
8.7.4.2 T-Junctions
289(1)
8.8 Examples
290(35)
8.8.1 Serenity
290(1)
8.8.2 Test System
290(1)
8.8.3 Spheres
291(17)
8.8.3.1 Conducting Sphere
291(5)
8.8.3.2 Dielectric Sphere
296(6)
8.8.3.3 Coated Sphere
302(6)
8.8.4 EMCC Plate Benchmark Targets
308(7)
8.8.4.1 Wedge Cylinder
309(1)
8.8.4.2 Wedge-Plate Cylinder
309(1)
8.8.4.3 Plate Cylinder
310(1)
8.8.4.4 Business Card
310(5)
8.8.5 Strip Dipole Antenna
315(1)
8.8.6 Bowtie Antenna
316(2)
8.8.7 Archimedean Spiral Antenna
318(3)
8.8.8 Monoconic Reentry Vehicle with Dielectric Nose
321(4)
8.8.9 Summary of Examples
325(1)
References
325(4)
9 The Fast Multipole Method 329(68)
9.1 Matrix-Vector Product
330(2)
9.2 Addition Theorem
332(3)
9.2.1 Wave Translation
333(2)
9.2.1.1 Complex Wavenumbers
335(1)
9.3 FMM Matrix Elements
335(4)
9.3.1 EFIE
335(2)
9.3.1.1 L Operator
335(1)
9.3.1.2 K Operator
336(1)
9.3.2 MFIE
337(1)
9.3.3 nMFIE
337(2)
9.3.3.1 n x K Operator
337(1)
9.3.3.2 n x L Operator
338(1)
9.3.4 Unit Sphere Decomposition
339(1)
9.4 One-Level Fast Multipole Algorithm
339(10)
9.4.1 Grouping of Basis Functions
340(3)
9.4.1.1 Classification of Near and Far Groups
341(1)
9.4.1.2 Near Matrix
341(2)
9.4.2 Number of Multipoles
343(1)
9.4.2.1 Limiting L for Transfer Functions
344(1)
9.4.2.2 L for Complex Wavenumbers
344(1)
9.4.3 Integration on the Sphere
344(3)
9.4.3.1 Spherical Harmonic Representation
345(1)
9.4.3.2 Total Bandwidth
346(1)
9.4.3.3 Transfer Functions
346(1)
9.4.3.4 Radiation and Receive Functions
347(1)
9.4.4 Matrix-Vector Product
347(1)
9.4.4.1 Near Product
347(1)
9.4.4.2 Far Product
347(1)
9.4.5 Computational Complexity
348(1)
9.5 Multi-Level Fast Multipole Algorithm (MLFMA)
349(10)
9.5.1 Spatial Subdivision via Octree
349(1)
9.5.2 Near Matrix
350(1)
9.5.3 Sampling Rates
350(1)
9.5.4 Far Product
351(5)
9.5.4.1 Upward Pass (Aggregation)
351(3)
9.5.4.2 Downward Pass (Disaggreption)
354(2)
9.5.5 Interpolation Algorithms
356(3)
9.5.5.1 Statement of the Problem
356(1)
9.5.5.2 Global Interpolation by Spherical Harmonics
357(1)
9.5.5.3 Global Interpolation by FH
358(1)
9.5.5.4 Local Interpolation by Lagrange Polynomials
358(1)
9.6 Preconditioners
359(5)
9.6.1 Diagonal Preconditioner
360(1)
9.6.2 Block Diagonal Preconditioner
360(1)
9.6.3 Incomplete LU (ILU) Preconditioners
361(1)
9.6.4 Sparse Approximate Inverse (SAI)
361(3)
9.6.4.1 Dense QR Factorization
362(2)
9.7 Examples
364(29)
9.7.1 Test System
364(1)
9.7.2 Spheres
364(7)
9.7.2.1 Conducting Sphere
364(1)
9.7.2.2 Dielectric Sphere
365(1)
9.7.2.3 Coated Sphere
365(6)
9.7.3 EMCC Benchmark Targets
371(16)
9.7.3.1 NASA Almond
371(5)
9.7.3.2 EMCC Ogive
376(1)
9.7.3.3 EMCC Double Ogive
376(1)
9.7.3.4 EMCC Cone-Sphere
376(1)
9.7.3.5 EMCC Cone-Sphere with Gap
376(6)
9.7.3.6 Monoconic Reentry Vehicle with Dielectric Nose
382(5)
9.7.4 Summary of Examples
387(1)
9.7.5 Initial Guess in Iterative Solution
388(2)
9.7.6 Preconditioner Performance
390(3)
9.8 Notes on Software Implementation
393(1)
9.8.1 Parallelization
393(1)
9.8.1.1 Single Right-Hand Side Solve
393(1)
9.8.1.2 Multiple Right-Hand Side Solve
394(1)
9.8.2 Vectorization
394(1)
References
394(3)
10 Integration 397(18)
10.1 One-Dimensional Integration
397(7)
10.1.1 Centroidal Approximation
397(1)
10.1.2 Rectangular Rule
398(1)
10.1.3 Trapezoidal Rule
399(2)
10.1.3.1 Romberg Integration
400(1)
10.1.4 Simpson's Rule
401(2)
10.1.4.1 Adaptive Simpson's Rule
402(1)
10.1.5 One-Dimensional Gaussian Quadrature
403(1)
10.2 Integration over Triangles
404(9)
10.2.1 Simplex Coordinates
404(2)
10.2.2 Radiation Integrals with a Constant Source
406(2)
10.2.2.1 Special Cases
408(1)
10.2.3 Radiation Integrals with a Linear Source
408(2)
10.2.3.1 General Case
409(1)
10.2.3.2 Special Cases
409(1)
10.2.4 Gaussian Quadrature on Triangles
410(3)
10.2.4.1 Comparison with Analytic Solution
411(2)
References
413(2)
A Scattering Using Physical Optics 415(8)
A.1 Field Scattered at a Conducting Interface
415(1)
A.2 Plane Wave Decomposition at a Planar Interface
416(2)
A.3 Field Scattered at a Dielectric Interface
418(1)
A.4 Layered Dielectrics over Conductor
419(2)
References
421(2)
Index 423