Atnaujinkite slapukų nuostatas

El. knyga: Methods in Bioengineering: Stem Cell Bioengineering

  • Formatas: 260 pages
  • Išleidimo metai: 31-Jan-2009
  • Leidėjas: Artech House Publishers
  • ISBN-13: 9781596934030
Kitos knygos pagal šią temą:
  • Formatas: 260 pages
  • Išleidimo metai: 31-Jan-2009
  • Leidėjas: Artech House Publishers
  • ISBN-13: 9781596934030
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Researchers and practitioners in biomedical sciences or in technical disciplines that address medical concerns describe methods for deriving, manipulating, targeting, and preparing stem cells for clinical use. They cover deriving and testing human embryonic stem cells, micro-scale and macro-scale techniques to expand stem cell populations and their differentiation, assays to demonstrate stem cell phenotype and function, boosting endogenous stem cell populations in the adult, and non-invasive methods for imaging stem cell transplants and monitoring graft function. The descriptions are detailed enough to allow researchers with typical bioengineering laboratory equipment to reproduce the methods. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)
Preface xiii
Somatic Cell Nuclear Transfer and Derivation of Embryonic Stem Cells
1(22)
Introduction
2(1)
Materials for Nuclear Transfer
2(2)
Equipment for mouse nuclear transfer
2(1)
Reagents for mouse nuclear transfer
2(2)
Methods for Nuclear Transfer
4(9)
Preparation of enucleation and nuclear transfer pipettes
4(1)
Medium preparation
4(1)
Animal preparation
5(1)
Nuclear transfer
5(1)
Enucleation
5(1)
Preparation of donor cells
6(1)
Nuclear transfer
7(4)
Activation
11(1)
Embryo culture and embryo transfer
12(1)
Derivation of Mouse ntES Cells
13(1)
Materials for ES Cell Derivation
13(1)
Methods for ES Cell Derivation
14(5)
Derivation of ntES cells
14(1)
In vitro characterization of ntES cells
15(1)
In vivo characterization of ntES cells
16(3)
Discussion and Commentary
19(2)
Troubleshooting Table
19(2)
Summary Points
21(1)
Acknowledgments
21(1)
References
21(2)
Derivation of Mouse Parthenogenetic Embryonic Stem Cells
23(16)
Introduction
24(1)
Materials
24(5)
Reagents
24(2)
Equipment
26(1)
Media recipe
27(2)
Methods
29(6)
Generation of p(MI) embryos
30(1)
Generation of p(MII) embryos
30(1)
Generation of p(hap) embryos
31(1)
Derivation of p(MI), p(MII), and p(hap) ES cells
32(2)
ES cell characterization
34(1)
Teratoma induction
34(1)
Data Acquisition, Anticipated Results, and Interpretation
35(1)
Discussion and Commentary
35(1)
Troubleshooting Table
36(1)
Summary Points
36(1)
Acknowledgments
37(1)
References
37(2)
Generation of Mice from Embryonic Stem Cells Using Tetraploid Embryos as Hosts
39(10)
Introduction
40(1)
Experimental Design
40(1)
Materials
41(1)
Preparation of 4n embryos: Mice and reagents
41(1)
Preparation of 4n embryos: Equipment
41(1)
ES cells and culture conditions
41(1)
Micromanipulation system
42(1)
Methods
42(3)
Preparation of host embryos
42(1)
Electrofusion of two-cell stage embryos
43(1)
Removal of the zona pellucida
43(1)
Generation of ES → multiple 4n embryos by aggregation
43(1)
Generation of ES → 4n embryos by blastocyst injection
44(1)
Data acquisition
45(1)
Anticipated Results
45(1)
Discussion and Commentary
45(2)
Troubleshooting Table
46(1)
Application Notes
47(1)
Summary Points
47(1)
Acknowledgments
48(1)
References
48(1)
Bioreactor Design and Implementation
49(14)
Introduction
50(1)
Experimental Methods and Materials
51(5)
General system description
51(1)
Closed system
52(1)
Hollow-fiber bioreactor
53(1)
CES fluid circuit
54(1)
Oxygenator design
55(1)
Monitoring
56(1)
User interface
56(1)
Anticipated Results
56(4)
Loading whole BM marrow into the CES
58(1)
Loading preselected MSC into the CES
59(1)
Discussion and Commentary
60(1)
Troubleshooting Table
61(1)
Application Notes
61(1)
Therapeutic dose of MSC grown from a whole BM sample
61(1)
Nonadherent cell culture: Kg1a cells grown in suspension
61(1)
Summary Points
62(1)
Extracellular Matrix Microarrays and Stem Cell Fate
63(12)
Introduction
64(1)
Experimental Design
65(1)
Materials
65(1)
Methods
66(3)
Preparation of substrates for arrays
66(1)
Fabrication of ECM arrays
67(1)
Cell culture on ECM arrays
68(1)
Staining, imaging, and data acquisition
68(1)
Data analysis
69(1)
Anticipated Results
69(1)
Discussion and Commentary
70(2)
Troubleshooting Table
71(1)
Application Notes
72(1)
Summary Points
72(1)
Acknowledgments
73(1)
References
73(2)
Microfluidic Culture Platform for Investigating the Proliferation and Differentiation of Stem Cells
75(14)
Introduction
76(1)
Experimental Design
76(4)
Microfluidic platform for differentiation of human neural progenitor cells
76(1)
A hybrid microfluidic platform for stem cell biology
77(2)
ESC response under dynamically controlled gradient condition
79(1)
Materials and Methods
80(3)
Fabrication of the microfluidic device
80(1)
Fabrication of a hybrid microfluidic platform
81(1)
Human neural stem cells
81(1)
Mouse neural stem cells
82(1)
Culturing cells inside the microfluidic chamber and time-lapse microscopy
82(1)
Immunocytochemistry
83(1)
Data Acquisition, Anticipated Results, and Interpretation
83(3)
hNSC proliferation in the gradient chamber
83(1)
Differentiation of hNSCs into astrocytes in the gradient chamber
84(1)
ESC response to BMP signaling
85(1)
Discussion and Commentary
86(1)
Troubleshooting Table
86(1)
Application Notes
87(1)
Summary Points
87(1)
Acknowledgments
87(1)
References
87(2)
Analysis of Mouse Hematopoietic Stem and Progenitor Cells
89(18)
Introduction
90(1)
Experimental Design of Lineage Depletion of Whole Bone Marrow Cells
90(1)
Materials for Lineage Depletion of Whole Bone Marrow Cells
91(4)
Tools and plasticware
91(1)
Reagents
91(1)
Additional equipment and reagents required for method 1 (MACS beads method)
91(1)
Additional equipment and reagents required for method 2 (Dynabeads method)
91(1)
Common protocols for both methods
91(2)
Discussion and commentary
93(1)
Troubleshooting Table for Lineage Depletion Method
94(1)
Methylcellulose-Based in Vitro Colony-Forming Assay
95(2)
Materials
95(1)
Methods
95(1)
Data acquisition, anticipated results, and interpretation
96(1)
Discussion and commentary
96(1)
Troubleshooting Table for CFU Assay
97(1)
Radiation of Mice for In Vivo Assays
97(1)
Troubleshooting Table for Bone Marrow Transplantation
97(1)
Colony-Forming Unit-Spleen Assay
98(2)
Materials
98(1)
Methods
99(1)
Data acquisition, anticipated results, and interpretation
99(1)
Discussion and commentary
100(1)
Troubleshooting Table for CFU-S Assay
100(1)
Quantification of HSCs Using the Limiting Dilution Assay
100(4)
Buffers and materials
101(1)
Methods
101(1)
Data acquisition, anticipated results, and interpretation
102(1)
Discussion and commentary
103(1)
Troubleshooting Table for Limited Dilution Assay
104(1)
Summary Points
104(3)
References
105(2)
Skeletal Stem Cells and the Hematopoietic Microenvironment: Biology and Assays
107(10)
Introduction
108(1)
Experimental Design
108(1)
Materials
109(1)
Stromal cell isolation and culture
109(1)
Isolation of CD45-CD146+ cells
109(1)
In vivo transplantation
109(1)
Method
109(3)
Bone marrow single-cell suspensions
109(1)
Isolation of MCAM/CD146-expressing bone marrow osteoprogenitors
110(1)
In vivo transplantation
111(1)
Analysis of heterotopic ossicles
112(1)
Anticipated Results
112(1)
Discussion and Commentary
113(1)
Troubleshooting Table
114(1)
Application Notes
114(1)
Summary Points
115(1)
Acknowledgments
116(1)
References
116(1)
Targeting the Stem Cell Niche In Vivo
117(8)
Introduction
118(1)
Experimental Design
119(1)
Materials
120(1)
PTH treatment
120(1)
Obtaining bone marrow mononuclear cells
120(1)
Immunophenotypic enumeration of HSC number
120(1)
Functional enumeration of HSC number
120(1)
Methods
120(1)
Treatment of mice with PTH
120(1)
Immunophenotypic enumeration of HSC number
121(1)
Functional enumeration of HSC number
121(1)
Anticipated Results
121(1)
Discussion and Commentary
122(1)
Troubleshooting Table
122(1)
Application Notes
123(1)
Summary Points
123(1)
References
123(2)
Parabiosis in Aging Research and Regenerative Medicine
125(18)
Introduction
126(4)
What is parabiosis?
126(1)
Animal species
126(1)
Physiology of joining
126(1)
History of parabiosis and the range of its biomedical applications
127(1)
Parabiosis in aging studies
128(2)
Experimental Design for Aging Studies
130(1)
Materials
131(1)
Methods
131(5)
Parabiosis protocol
131(1)
Experimental method
132(3)
Postoperative care
135(1)
Removing the staples
135(1)
Separating a pair
135(1)
Troubleshooting Parabiotic Disease
136(1)
``Parabiotic intoxication''
136(1)
Suggestions for the side effects associated with parabiotic disease
137(1)
Discussion and Commentary
137(2)
Acknowledgments
139(1)
References
140(3)
Utilization of the Mixed Lymphocyte Reaction Assay to Determine Stem Cell Immunogenicity and Suppression
143(24)
Introduction
144(2)
Experimental Design
146(6)
Immunogenicity assay
146(2)
Suppression assay
148(1)
T-cell priming assay
149(3)
Materials
152(1)
Methods
152(3)
General considerations
152(1)
Safety
153(1)
Media preparation
153(1)
Prepare responder cell populations
153(1)
Prepare stimulator cell populations
154(1)
Performance of immunogenicity assays
154(1)
Performance of suppression assays
154(1)
Performance of T-cell priming assays
155(1)
MLR plate culture, pulsing with 3H-thymidine, cell harvest, and scintillation counting: applicable to all three MLR assays
155(1)
Data Acquisition, Anticipated Results, Interpretation, and Statistical Guidelines
155(5)
Immunogenicity assay
155(2)
Suppression assay
157(1)
T-cell priming assay
158(2)
Discussion and Commentary
160(3)
General considerations
160(1)
Immunogenicity assay
161(1)
Suppression assay
162(1)
T-cell priming assay
162(1)
Troubleshooting Table
163(1)
Application Notes
163(1)
Summary Points
164(1)
Acknowledgments
164(1)
References
164(3)
A Novel Method for the Preservation of Embryonic Stem Cells Using a Quartz Capillary Freezing System
167(12)
Introduction
168(4)
Slow-freezing protocols
168(1)
Vitrification protocols
168(1)
Increasing cooling rates for vitrification
169(1)
Quartz capillary system
169(1)
Apparent vitrification of CPA-laden solutions
169(2)
Slush nitrogen
171(1)
Experimental Design
172(1)
Materials
172(1)
Required equipment
172(1)
Supplies
172(1)
Cells and reagents
172(1)
Methods
173(1)
Murine ES cell culture
173(1)
Preparing slush nitrogen
173(1)
Cryopreservation of murine ES cells by vitrification
173(1)
Anticipated Results
174(2)
Cell attachment and proliferation after vitrification
174(1)
Pluripotent properties of ES cells after vitrification
174(2)
Discussion and Commentary
176(1)
Troubleshooting Table
176(1)
Application Notes
176(1)
Summary Points
177(1)
Acknowledgments
177(1)
References
177(2)
In Vivo MR Tracking of hESC-Derived Oligodendrocyte Precursors in Mouse Brain
179(14)
Introduction
180(1)
Experimental Design
180(1)
Materials
181(1)
Methods
182(4)
Maintenance and differentiation of hES cells
182(1)
Preparation of magnetically labeled cells
182(1)
Confirmation of magnetically labeled cells: Histochemical staining
182(2)
Transplantation procedure
184(1)
MRI procedure
184(2)
Data analysis
186(1)
Anticipated Results
186(1)
Discussion and Commentary
187(1)
Troubleshooting Table
188(1)
Application Notes
188(1)
Summary Points
189(1)
Acknowledgments
189(4)
References
About the Editors 193(2)
List of Contributors 195(6)
Index 201
Martin Yarmush, is the Helen Andrus Benedict Professor of Surgery and Bioengineering at the Harvard Medical School and Director of the Center for Engineering in Medicine at Massachusetts General Hospital. Dr. Yarmush is an internationally recognized engineer and biophysical chemist. Biju Parekkadan is an instructor in surgery and bioengineering at Massachusetts General Hospital. His research focus is in the area of stem cell bioengineering. He holds a B.S. in biomedical engineering from Rutgers University and a Ph.D. in chemical and medical engineering from the Harvard-MIT Division of Health Sciences and Technology.