Atnaujinkite slapukų nuostatas

Methods in Modern Biophysics 3rd ed. 2010 [Minkštas viršelis]

  • Formatas: Paperback / softback, 273 pages, aukštis x plotis: 235x155 mm, weight: 910 g, 287 Illustrations, black and white; XVI, 273 p. 287 illus., 1 Paperback / softback
  • Išleidimo metai: 06-Oct-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642030211
  • ISBN-13: 9783642030215
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 273 pages, aukštis x plotis: 235x155 mm, weight: 910 g, 287 Illustrations, black and white; XVI, 273 p. 287 illus., 1 Paperback / softback
  • Išleidimo metai: 06-Oct-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642030211
  • ISBN-13: 9783642030215
Kitos knygos pagal šią temą:
Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields.



Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important method for fast and highly sensitive identification of proteins, describes the determination of interaction surfaces in protein complexes by mass spectrometric mapping of binding of chemical linkers - a method to support the high-resolution structural analysis of large macromolecular assemblies.
The three-dimensional structure of proteins
1(22)
Structure of the native state
1(8)
Protein folding transition states
9(3)
Structural determinants of the folding rate constants
12(8)
Support of structure determination by protein folding simulations
20(3)
Liquid chromatography of biomolecules
23(14)
Ion exchange chromatography
23(5)
Gel filtration chromatography
28(3)
Affinity chromatography
31(2)
Counter-current chromatography and ultrafiltration
33(4)
Mass spectrometry
37(22)
Principles of operation and types of spectrometers
37(12)
Sector mass spectrometer
38(1)
Quadrupole mass spectrometer
39(1)
Ion trap mass spectrometer
39(1)
Time-of-flight mass spectrometer
40(3)
Fourier transform mass spectrometer
43(1)
lonization, ion transport and ion detection
44(1)
Ion fragmentation
45(1)
Combination with chromatographic methods
46(3)
Biophysical applications
49(10)
X-ray structural analysis
59(32)
Fourier transform and X-ray crystallography
59(26)
Fourier transform
59(10)
Protein X-ray crystallography
69(1)
Overview
69(1)
Production of suitable crystals
69(2)
Acquisition of the diffraction pattern
71(5)
Determination of the phases: heavy atom replacement
76(7)
Calculation of the electron density and refinement
83(1)
Cryocrystallography and time-resolved crystallography
84(1)
X-ray scattering
85(6)
Small angle X-ray scattering (SAXS)
85(3)
X-ray backscattering
88(3)
Protein infrared spectroscopy
91(16)
Spectrometers and devices
92(10)
Scanning infrared spectrometers
92(1)
Fourier transform infrared (FTIR) spectrometers
92(4)
LIDAR, optical coherence tomography, attenuated total reflection and IR microscopes
96(6)
Applications
102(5)
Electron microscopy
107(14)
Transmission electron microscope (TEM)
107(12)
General design
107(2)
Resolution
109(1)
Electron sources
110(2)
TEM grids
112(1)
Electron lenses
112(3)
Electron-sample interactions and electron spectroscopy
115(2)
Examples of biophysical applications
117(2)
Scanning transmission electron microscope (STEM)
119(2)
Scanning probe microscopy
121(26)
Atomic force microscope (AFM)
121(12)
Scanning tunneling microscope (STM)
133(2)
Scanning nearfield optical microscope (SNOM)
135(8)
Overcoming the classical limits of optics
135(3)
Design of the subwavelength aperture
138(4)
Examples of SNOM applications
142(1)
Scanning ion conductance microscope, scanning thermal microscope and further scanning probe microscopes
143(4)
Biophysical nanotechnology
147(18)
Force measurements in single protein molecules
147(3)
Force measurements in a single polymerase-DNA complex
150(2)
Molecular recognition
152(3)
Protein nanoarrays and protein engineering
155(3)
Study and manipulation of protein crystal growth
158(1)
Nanopipettes, molecular diodes, self-assembled nanotransistors, nanoparticle-mediated transfection, and further biophysical nanotechnologies
159(6)
Proteomics: high throughput protein functional analysis
165(12)
Target discovery
166(2)
Interaction proteomics
168(4)
Chemical proteomics
172(1)
Lab-on-a-chip technology, mass-spectrometric array scanners, and robots
173(2)
Structural proteomics
175(2)
Ion mobility spectrometry
177(22)
General design of spectrometers
177(5)
Resolution and sensitivity
182(3)
IMS-based ``sniffers''
185(1)
Design details
186(9)
Detection of biological agents
195(4)
ø- Value analysis
199(6)
The method
199(2)
High resolution of six protein folding transition states
201(4)
Evolutionary computer programming
205(10)
Reasons for the necessity of self-evolving computer programs
205(1)
General features of the method
205(3)
Protein folding and structure simulations
208(1)
Evolution of nanooptical devices made from nanoparticles
209(3)
Materials and methods
209(1)
Results and discussion
210(2)
Further potential applications
212(3)
Rapid partial protein ladder sequencing
215(8)
Principle of operation
215(1)
An example: myoglobin
216(5)
Potential experimental problems
221(2)
Surface labeling analysis of protein interactions
223(6)
Principle of operation
223(1)
An example: NHS-biotin label
224(2)
Potential experimental problems
226(3)
Conclusions
229(2)
References
231(32)
Index 263