Atnaujinkite slapukų nuostatas

El. knyga: Methods of Quantization: Lectures Held at the 39. Universitatswochen fur Kern- und Teilchenphysik, Schladming, Austria

Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 572
  • Išleidimo metai: 11-Jan-2008
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540451143
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 572
  • Išleidimo metai: 11-Jan-2008
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540451143

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Thisvolumecontainsthewrittenversionsofinvitedlecturespresentedat the"39. InternationaleUniversitatswochenfur .. Kern-undTeilchenphysik"in Schladming, Austria, which took place from February 26th to March 4th, 2000. The title of the school was "Methods of Quantization". This is, of course,averybroad eld,soonlysomeofthenewandinterestingdevel- mentscouldbecoveredwithinthescopeoftheschool. About75yearsagoSchrodingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni edtreatmentofrelativisticandqu- tume ectsisachievedbymeansoflocalquantum eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum- eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum- eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum- eldtheoriesisobtainedbyqu- tizingthe eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The"timeevolution"ofthesystemisthenconsideredin + "light-conetime"x =t+z/c. Theappealingfeaturesof"light-conequ- tization",whicharethereasonsfortherenewedinterestinthisformulation ofquantum eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede nitionofquantum eld theoriesisingenerala ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-odingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni edtreatmentofrelativisticandqu- tume ectsisachievedbymeansoflocalquantum eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum- eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum- eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum- eldtheoriesisobtainedbyqu- tizingthe? eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The"timeevolution"ofthesystemisthenconsideredin + "light-conetime"x =t+z/c. Theappealingfeaturesof"light-conequ- tization",whicharethereasonsfortherenewedinterestinthisformulation ofquantum eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede nitionofquantum eld theoriesisingenerala ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-Kleinprogramforsupergravity(P. vanNieuwenhuizen),on dynamicalr-matricesandquantization(A. Alekseev),andonthequantum Liouvillemodelasaninstructiveexampleofquantumintegrablemodels(L. Faddeev). Inaddition,theschoolwascomplementedbymanyexcellents- inars. Thelistofseminarspeakersandthetopicsaddressedbythemcanbe foundattheendofthisvolume. Theinterestedreaderisrequestedtocontact thespeakersdirectlyfordetailedinformationorpertinentmaterial. Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir e ortsandtothemainsponsorsoftheschool,theAustrianMinistryofE- cation,Science,andCultureandtheGovernmentofStyria,forprovidingg- eroussupport. Wealsoappreciatethevaluableorganizationalandtechnical assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugte- nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore, wethankoursecretaries,S. FuchsandE. Monschein,anumberofgra- atestudentsfromourinstitute,and,lastbutnotleast,ourcolleaguesfrom theorganizingcommitteefortheirassistanceinpreparingandrunningthe school. Graz, HeimoLatal March2001 WolfgangSchweiger Contents FormsofRelativisticDynamics BernardL. G. Bakker...1 1 Introduction...1 2 ThePoincar'eGroup...3 3 FormsofRelativisticDynamics...4 3. 1 ComparisonofInstantForm,FrontForm,andPointForm...6 4 Light-FrontDynamics...9 4. 1 RelativeMomentum,InvariantMass...9 4. 2 TheBoxDiagram...14 5 Poincar'eGeneratorsinFieldTheory...19 5. 1 FermionsInteractingwithaScalarField...20 5. 2 InstantForm...20 5. 3 FrontForm(LF)...21 5. 4 InteractingandNon-interactingGeneratorsonanInstant andontheLightFront...22 6 Light-FrontPerturbationTheory...23 6. 1 ConnectionofCovariantAmplitudes toLight-FrontAmplitudes...24 6. 2 Regularization...26 6. 3 MinusRegularization...26 7 TriangleDiagraminYukawaTheory...27 7. 1 CovariantCalculation ...28 7. 2 ConstructionoftheCurrentinLFD...30 7. 3 NumericalResults...37 3 8 FourVariationsonaThemein? Theory...37 8. 1 CovariantCalculation...39 8. 2 Instant-FormCalculation...42 8. 3 CalculationinLight-FrontCoordinates...47 8. 4 Front-FormCalculation...49 9 DimensionalRegularization:BasicFormulae...51 10 Four-DimensionalIntegration...52 11 SomeUsefulIntegrals...53 References...53 VIII Contents Light-ConeQuantization:FoundationsandApplications ThomasHeinzl...
Forms of Relativistic Dynamics.- Light-Cone Quantization: Foundations
and Applications.- Quantization of Constrained Systems.- Algebraic Methods of
Renormalization.- Functional Integrals for Quantum Theory.