Atnaujinkite slapukų nuostatas

El. knyga: Metric Space Topology: Examples, Exercises And Solutions

(The Univ Of Hong Kong, Hong Kong)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"This introductory book contains a rich collection of exercises and worked examples in Metric Spaces. Other than questions in the traditional setting, plenty of True-or-False type questions and open-ended questions are included. With detailed solutions, these are highly effective in helping students gain a bird's eye view and master the subject and pitfalls better. The presentation is clear in nurturing the mathematical insights and mathematical maturity of the readers. In this book, the pictorializationor visualization of abstract situations into simple pictures is very often crucially conducive to the understanding of the materials. This serves to give an insightful view of the intricate problems, as well as a clue or a direction to formulate rigorousarguments. The learning outcomes include: Demonstrate knowledge and understanding of the basic features of mathematical analysis and point set topology (e.g., able to identify objects that are topological equivalent); Apply knowledge and skills acquired in mathematical analysis to analyze and handle novel situations in a critical way (e.g., able to determine whether a specific function is uniformly continuous); Think creatively and laterally to generate innovative examples and solutions to non-standard problems (e.g., able to construct counterexamples to inaccurate mathematical statements). Acquire sufficient background for further studies in Functional Analysis, Real Analysis, Differential Geometry, Complex Analysis, Algebraic Geometry, Probability Theory, Mathematical Physics, Economics, and others"--