Atnaujinkite slapukų nuostatas

El. knyga: Microencapsulation in the Food Industry: A Practical Implementation Guide

Edited by (Vice President of Research and Innovation, FONA International, LLC, Geneva, IL, USA, a wholly-owned subsidiary of McCormick & Company, Inc.)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-Jun-2014
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780124047358
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-Jun-2014
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780124047358
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Microencapsulation is being used to deliver everything from improved nutrition to unique consumer sensory experiences. Its rapidly becoming one of the most important opportunities for expanding brand potential. Microencapsulation in the Food Industry: A Practical Implementation Guide is written for those who see the potential benefit of using microencapsulation but need practical insight into using the technology. With coverage of the process technologies, materials, testing, regulatory and even economic insights, this book presents the key considerations for putting microencapsulation to work. Application examples as well as online access to published and issued patents provide information on freedom to operate, building an intellectual property portfolio, and leveraging ability into potential in licensing patents to create produce pipeline.This book bridges the gap between fundamental research and application by combining the knowledge of new and novel processing techniques, materials and selection, regulatory concerns, testing and evaluation of materials, and application-specific uses of microencapsulation.

Recenzijos

"...meant to represent a summary of current knowledge available to date in the field of microencapsulation and gather in one volume practical aspects of matter." --Ingredienti Alimentari, November-December 2014

Daugiau informacijos

Put microencapsulation theory into practice
Foreword xiii
Preface xv
About the Editors xvii
List of Contributors
xix
Part I Introduction
1 Introduction to Microencapsulation and Controlled Delivery in Foods
Robert Sobel
Ronald Versic
Anilkumar G. Gaonkar
1.1 Introduction
3(1)
1.2 Microencapsulation defined
3(1)
1.3 Reasons for microencapsulation
4(1)
1.4 Types of microcapsules
5(1)
1.5 Historical account of microencapsulation
5(3)
1.6 Materials used for microencapsulation purposes
8(1)
1.7 Microencapsulation techniques used within the food industry
9(1)
1.8 Trends in microencapsulation
9(1)
1.9 Challenges in microencapsulation of food ingredients
10(1)
1.10 The future of microencapsulation of food ingredients
11(4)
References
11(4)
Part II Concept of Microencapsulation
2 Factors and Mechanisms in Microencapsulation
Niraj Vasisht
2.1 Introduction
15(1)
2.2 Structural design of the microcapsule
15(1)
2.3 Microcapsule or microsphere type
16(1)
2.4 Microcapsule size, shape, and payload
16(2)
2.5 Physicochemical factors
18(2)
2.6 Mechanism of diffusion
20(4)
2.7 Conclusion
24(1)
References
24(1)
3 Applications of Mass and Heat Transfer in Microencapsulation Processes
Niraj Vasisht
3.1 Introduction
25(1)
3.2 Mechanism of diffusion
25(1)
3.3 Zero order or pseudo-zero order diffusion model
26(1)
3.4 Fickian diffusion model
27(5)
3.5 First order diffusion model
32(1)
3.6 Conclusion
32(3)
References
32(3)
Part III Process Technologies in Microencapsulation
4 Overview of Microencapsulation Process Technologies
James Oxley
4.1 Introduction
35(1)
4.2 Process components
35(2)
4.3 Processes
37(2)
4.4 Comparisons
39(5)
4.5 Emerging processes and trends'
44(1)
4.6 Process selection
44(3)
References
45(2)
5 Atomization and Spray-Drying Processes
Irwin C. Jacobs
5.1 Introduction
47(1)
5.2 Atomization
48(2)
5.3 Drying configurations
50(4)
5.4 Operational practice
54(1)
5.5 Feed preparation
55(1)
5.6 Recent advances in atomization and spray-drying processes
55(1)
5.7 Conclusion
55(2)
References
56(1)
6 New Advances in Spray-Drying Processes
Karin Nordstrom Dyvelkov
Jakob Sloth
6.1 Introduction
57(1)
6.2 Technologies
57(1)
6.3 Computational optimization
57(1)
6.4 Analyzing the drying process of a droplet
58(2)
6.5 Drying kinetics as input for computational fluid dynamics
60(3)
6.6 Conclusion
63(2)
References
63(2)
7 Fluid Bed Coating-Based Microencapsulation
Charles Frey
7.1 Introduction
65(3)
7.2 Wurster (bottom spray) fluid bed coating
68(1)
7.3 Top-spray granulation
69(1)
7.4 Rotary tangential spray granulation
69(1)
7.5 Static tangential spray granulation
69(1)
7.6 Discussion
69(7)
7.7 Formulation considerations
76(1)
7.8 Conclusion
77(4)
References
78(3)
8 Extrusion-Based Microencapsulation for the Food Industry
Jenni Harrington
Martin Schaefer
8.1 Introduction
81(2)
8.2 Evolution of extrusion technology
83(1)
8.3 Conclusion
84(1)
References
84(1)
9 Spheronization, Granulation, Pelletization, and Agglomeration Processes
Michael Jacob
9.1 Introduction
85(2)
9.2 Basic equipment
87(1)
9.3 Batch fluidized beds for drying, agglomeration, and coating
88(1)
9.4 Continuous fluidized beds for drying, agglomeration, spray granulation, and coating
89(1)
9.5 ProCell type of continuous spouted beds for drying, agglomeration, spray granulation, and coating
90(2)
9.6 Technical options for pelletization
92(1)
9.7 Technical options for high-shear granulation
93(1)
9.8 Technical options for extrusion
93(1)
9.9 Application case studies
94(1)
9.10 Formulation of enzymes
94(2)
9.11 Formulation of vitamins
96(1)
9.12 Encapsulation of volatile ingredients
96(1)
9.13 Conclusion
97(2)
References
98(1)
10 Annular Jet-Based Processes
Thorsten Brandau
10.1 Introduction
99(1)
10.2 Process technologies
99(3)
10.3 Equipment
102(5)
10.4 Materials
107(3)
10.5 Conclusion
110(1)
References
110(1)
11 Monodispersed Microencapsulation Technology
Nathan H. Dormer
Cory J. Berkland
Milind Singh
11.1 Introduction
111(1)
11.2 Monodisperse particle fabrication technologies
111(10)
11.3 Conclusion
121(4)
References
121(4)
12 Coacervation Processes
Cuie Yan
Wei Zhang
12.1 Introduction
125(1)
12.2 Selection of wall materials
126(2)
12.3 Coacervation encapsulation processes
128(2)
12.4 Parameters influencing the formation of coacervates
130(2)
12.5 Evaluation of coacervates
132(2)
12.6 Stability, controlled release, and bioavailability
134(1)
12.7 Conclusion
135(4)
References
135(4)
13 Application of Liposomes in the Food Industry
Zahra Mirafzali
Courtney S. Thompson
Karim Tallua
13.1 Introduction
139(1)
13.2 What are liposomes?
139(2)
13.3 Liposome stability
141(8)
13.4 Conclusion
149(2)
References
150(1)
14 Nanoencapsulation in the Food Industry: Technology of the Future
Atul Ramesh Khare
Niraj Vasisht
14.1 Introduction
151(1)
14.2 Technology advantages
151(1)
14.3 Classification of nanoencapsulated systems
151(1)
14.4 Liquid--liquid systems
152(1)
14.5 Microemulsions
152(2)
14.6 Nanoemulsions
154(1)
14.7 Liposomes
154(1)
14.8 Solid--lipid nanoparticles
154(1)
14.9 Solid--solid systems
154(1)
14.10 Nanofibers
155(1)
14.11 Conclusion
155(2)
References
155(2)
15 Aqueous Two-Phase Systems for Microencapsulation in Food Applications
Anna Millqvist-Fureby
15.1 Introduction
157(1)
15.2 Encapsulation in films, gels, and dispersed gel particles
158(1)
15.3 Encapsulation in particulate systems
159(9)
15.4 Conclusion
168(5)
References
168(5)
Part IV Materials Used in Microencapsulation
16 Selection of Materials for Microencapsulation
Niraj Vasisht
16.1 Introduction
173(1)
16.2 Morphological design
173(1)
16.3 Material selection
173(4)
16.4 Hydrophilic materials
177(3)
16.5 Hydrophobic materials
180(1)
16.6 Conclusion
180(1)
References
180(1)
17 Cellulose Polymers in Microencapsulation of Food Additives
Dave Wallick
17A Introduction
181(1)
17.2 Properties of cellulosic polymers
181(5)
17.3 Applications of cellulosic polymers in microencapsulation
186(4)
17.4 Process considerations using cellulosic polymers
190(5)
References
191(4)
18 The Use of Starch-Based Materials for Microencapsulation
Jason Z. Li
18.1 Introduction
195(1)
18.2 Starch and starch modifications
195(5)
18.3 Characteristics of OSA starches
200(1)
18.4 Using modified starches for microencapsulation
200(9)
18.5 Conclusion
209(2)
Acknowledgments
209(1)
References
209(2)
19 Use of Milk Proteins for Encapsulation of Food Ingredients
Mary Ann Augustin
Christine Maree Oliver
19.1 Introduction
211(1)
19.2 Milk proteins and their function in encapsulation
212(2)
19.3 Encapsulation systems using caseins and whey proteins
214(2)
19.4 Milk proteins in combination with other materials as the encapsulating matrix
216(4)
19.5 Patent-based strategies
220(2)
19.6 Conclusion
222(5)
References
222(5)
20 Gelatin and Other Proteins for Microencapsulation
Yang Meng
Sylvie Cloutier
20.1 Introduction
227(1)
20.2 Gelatin
227(5)
20.3 Soy protein
232(2)
20.4 Zein protein
234(1)
20.5 Pea protein
235(1)
20.6 Conclusion
236(5)
References
236(5)
21 Hydrocolloids and Gums as Encapsulating Agents
Erin Burnside
21.1 Introduction
241(1)
21.2 Materials
241(4)
21.3 Applications
245(5)
21.4 Conclusion
250(3)
References
250(3)
22 Fats and Waxes in Microencapsulation of Food Ingredients
Farah Jean-Jacques Toublan
22.1 Introduction
253(1)
22.2 Structural diversity in lipids
253(4)
22.3 Physicochemical properties of lipids
257(4)
22.4 Lipids in microencapsulation applications
261(4)
22.5 Conclusion
265(2)
References
265(2)
23 Yeast Cells and Yeast-Based Materials for Microencapsulation
Efstathia I. Paramera
Vaios T. Karathanos
Spyros J. Konteles
23.1 Introduction
267(1)
23.2 Description of the yeast cell as encapsulation material
267(1)
23.3 The yeast cell encapsulation process
268(1)
23.4 Parameters that affect yeast encapsulation performance
268(8)
23.5 Properties of yeast microcapsules
276(2)
23.6 Applications of yeast microcapsules in the food industry
278(2)
23.7 Conclusion
280(3)
References
280(3)
24 Pollen and Spore Shells---Nature's Microcapsules
Grahame Mackenzie
Stephen Beckett
Stephen Atkin
Alberto Diego-Taboada
24.1 Introduction
283(1)
24.2 Concept behind using pollen shells for microencapsulation
283(1)
24.3 Structural and chemical features of pollen shells useful for microcapsule formation
284(2)
24.4 Extraction of pollen shells
286(2)
24.5 Modifications to pollen shells
288(1)
24.6 Loading of actives
288(2)
24.7 Quality control of loaded shells
290(1)
24.8 Release of actives
290(2)
24.9 Applications of pollen shells for microencapsulation relevant to the food industry
292(1)
24.10 Perceived advantages of pollen shells for microencapsulation
293(6)
Appendix: Chemical Structure of Sporopollenin
294(1)
References
295(4)
25 Mesoporous Solid Carrier Particles in Controlled Delivery and Release
Anna Millqvist-Fureby
Anders Larsson
Mikael Jam
Emiel Speets
Anwar Ahniyaz
Lubica Macakova
Vila Elofsson
25.1 Introduction
299(2)
25.2 Carrier particles
301(2)
25.3 Loading methods
303(4)
25.4 Characterization of unloaded and loaded particles
307(1)
25.5 Release measurements
308(2)
25.6 The effects of characteristics of the active on loading and release
310(5)
25.7 Effects of loading medium
315(1)
25.8 How can loading and release be controlled?
316(7)
References
317(6)
Part V Testing and Quality Control
26 Testing Tools and Physical, Chemical, and Microbiological Characterization of Microencapsulated Systems
Linda L. Moran
Yun Yin
Keith R. Cadwallader
Graciela W. Padua
26.1 Introduction
323(1)
26.2 Physical characterization
323(14)
26.3 Chemical characterization
337(9)
26.4 Conclusion
346(7)
References
348(5)
27 Real-Time Analysis of Oxidative Barrier Properties of Encapsulation Systems
Rohan V. Tikekar
Nitin Nitin
27.1 Introduction
353(1)
27.2 Rapid methods to measure interaction of encapsulation systems with oxidizing agents
354(5)
27.3 Applications of rapid measurement techniques
359(4)
27.4 Conclusion
363(4)
References
364(3)
28 Stability Characterization and Sensory Testing in Food Products Containing Microencapsulants
Young Soo Lee
Soo-Yeun Lee
Joseph D. Donovan
28.1 Introduction
367(1)
28.2 Measuring stability
367(1)
28.3 Factors affecting wall stability
367(3)
28.4 Factors affecting core stability
370(3)
28.5 Sensory impacts of microencapsulated ingredients in foods
373(4)
28.6 Conclusion
377(8)
References
377(8)
Part VI Regulatory, Quality, Process Scale-Up, Packaging, and Economics
29 Regulatory Considerations of Encapsulation Used in the Food Industry
Jennifer Hoffmann
29.1 Introduction
385(1)
29.2 Animal derivatives
385(1)
29.3 Allergens
386(1)
29.4 Genetic modification and organic
386(1)
29.5 "Natural" claims
387(1)
29.6 Nutritional content
387(1)
29.7 Safe consumption
388(1)
29.8 Safe handling
389(1)
29.9 Conclusion
390(1)
References
390(1)
30 Process Scale-up Considerations for Microencapsulation Processes
Irwin C. Jacobs
30.1 Definition of scale-up within the context of microencapsulation process technology
391(1)
30.2 Physical phenomena in controlled-release process technology
391(2)
30.3 Basic quality by design principles
393(1)
30.4 Tools for improved scaling of microencapsulation process technologies
394(2)
30.5 Troublesome assumptions
396(1)
30.6 Why there are often problems in scale-up
396(1)
30.7 Time and cost constraints
396(1)
30.8 Case study: spray drying and spray congealing
396(2)
30.9 Conclusion
398(1)
References
398(1)
31 Microencapsulation and Packaging---Value-Added Solutions to Product Development
Jose Maria Lagaron
Amparo Lopez-Rubio
Maria Jose fabra
Rocio Perez-Masia
31.1 Smart packaging: sensors and heat management materials
399(3)
31.2 Bioactive packaging
402(3)
31.3 Innovative packaging technologies: printing, printed electronics, and scratch and sniff
405(1)
31.4 Conclusion and outlook
406(3)
References
406(3)
32 The Economics of Microencapsulation in the Food Industry
Ronald J. Versic
32.1 Introduction
409(1)
32.2 The process
409(1)
32.3 Criteria
410(1)
32.4 Processing costs
411(6)
32.5 Conclusion
417(4)
References
417(4)
Part VII Microencapsulation Applications
33 Novel Concepts and Challenges of Flavor Microencapsulation and Taste Modification
Robert Sobel
Michael Gundlach
Chin-Ping Su
33.1 Introduction
421(2)
33.2 Challenges of flavor encapsulation
423(6)
33.3 Summary of common flavor microencapsulation techniques
429(4)
33.4 Summary of flavor microencapsulation materials
433(2)
33.5 Applications of microencapsulated flavor
435(4)
33.6 Conclusion
439(4)
Acknowledgments
439(1)
References
439(4)
34 Flavor Release and Application in Chewing Gum and Confections
Marc A. Meyers
34.1 Introduction
443(1)
34.2 Why microencapsulate flavors?
443(1)
34.3 Microencapsulation forms
444(1)
34.4 Microencapsulation forms---other types
445(1)
34.5 Chewing gum applications---designing for customized performance
445(3)
34.6 Microencapsulated flavors---when to use them?
448(1)
34.7 To be effective, microencapsulated flavors also require sustained and long-lasting sweetness and sourness
449(1)
34.8 Where is microencapsulated flavor applied in chewing gum applications?
449(1)
34.9 Challenges in microencapsulating flavors
450(1)
34.10 Other confectionery applications
450(1)
34.11 Chewing gum patent review---main companies: Wrigley, Warner---Lambert, Cadbury---Adams/Kraft Foods Global, Nabisco/Hershey confectionery companies (1990--2013)
450(1)
34.12 Conclusion
450(5)
Appendix: Chewing gum patent review
450(3)
References
453(2)
35 Novel Microencapsulation System to Improve Controlled Delivery of Cup Aroma during Preparation of Hot Instant Coffee Beverages
Bary Zeller
Anilkumar Gaonkar
Stefano Ceriali
Anthony Wragg
35.1 Introduction
455(1)
35.2 Novel microencapsulation system development
456(1)
35.3 Guide to related publications by the authors
457(1)
35.4 Volatile carrier liquids
457(1)
35.5 Model coffee aroma systems
458(2)
35.6 Coffee microcapsule properties
460(1)
35.7 Coffee-aromatized carriers
461(2)
35.8 Carrier-free coffee essences
463(1)
35.9 Discussion
463(6)
Acknowledgments
467(1)
References
467(2)
36 Protection and Delivery of Probiotics for Use in Foods
Moti Harel
Qiong Tang
36.1 Introduction
469(1)
36.2 Microencapsulation and delivery concepts for probiotics
470(4)
36.3 Drying methods
474(4)
36.4 Delivery forms
478(1)
36.5 Methods for estimating process loss and product shelf-life
479(2)
36.6 Conclusion
481(4)
References
482(3)
37 Protection and Masking of Omega-3 and -6 Oils via Microencapsulation
Michael Nickerson
Cuie Yan
Sylvie Cloutier
Wei Zhang
37.1 Introduction
485(2)
37.2 Encapsulation technologies used for omega-3 and -6 polyunsaturated fatty acids
487(5)
37.3 Characterization methods
492(3)
37.4 Applications
495(6)
References
496(5)
38 Microencapsulation of Vitamins, Minerals, and Nutraceuticals for Food Applications
Yao Olive Li
Veronica Paula Dueik Gonzalez
Levente L. Diosady
38.1 Microencapsulation as a tool for effective delivery of micronutrients and nutraceuticals
501(4)
38.2 Criteria for developing microencapsulated delivery systems for micronutrients and nutraceuticals
505(2)
38.3 Development of fortified and functional foods
507(4)
38.4 Case study: technical approaches to the fortification of staple foods
511(7)
38.5 Conclusion and perspectives
518(5)
References
519(4)
39 Taste-Masking and Controlled Delivery of Functional Food Ingredients
Ahmad Akashe
Anilkumar G. Gaonkar
39.1 Introduction
523(1)
39.2 Why controlled delivery?
523(1)
39.3 Product application
524(1)
39.4 Matrix to core compatibility
524(1)
39.5 Process of microencapsulation
525(3)
39.6 Characterization of microparticles
528(4)
39.7 Summary
532(1)
Acknowledgments
532(1)
References
532(1)
40 Microencapsulated Enzymes in Food Applications
Douglas Dale
40.1 Introduction
533(1)
40.2 Food enzyme market
533(2)
40.3 Enzyme properties and challenges
535(1)
40.4 Encapsulation
535(3)
40.5 Food applications
538(3)
40.6 Conclusion
541(2)
References
541(2)
41 Commercial Applications of Microencapsulation and Controlled Delivery in Food and Beverage Products
Rufino Perez
Anilkumar G. Gaonkar
41.1 Introduction
543(2)
41.2 Flavor and taste
545(1)
41.3 Health and wellness
545(1)
41.4 Experiential and interactive effects
546(1)
41.5 Interactive packaging
546(1)
41.6 Trends and outlook
547(4)
References
548(3)
42 Inventing and Using Controlled-Release Technologies
Ronald J. Versic
42.1 Introduction
551(1)
42.2 A needs-based process
551(1)
42.3 Developmental principles
551(1)
42.4 Release profile
552(1)
42.5 Other issues
552(1)
42.6 Releasing the core
553(1)
42.7 Developing a new technology
553(1)
42.8 Public knowledge
554(1)
42.9 Conclusion
554(3)
References
555(2)
Index 557
Robert Sobel serves FONA International as a Vice President of Research and Innovation in the development of new and novel flavor encapsulation delivery systems and taste modification technologies. He has over 20 years of industrial flavor R&D experience at FONA International, located in Geneva, Illinois, USA. Prior to joining FONA International, Robert was an educator within both secondary and undergraduate settings teaching chemistry and physics. He is cited as an inventor on many patents and patents pending in the art of microencapsulation and flavor analysis and add-back (>20 patent matters). Robert regularly delivers domestic and international symposia in the field of microencapsulation.