Foreword |
|
xiii | |
Editor's Preface |
|
xv | |
Part I Introduction |
|
|
1 General Introduction to Optical Tweezers and Their Applications |
|
|
3 | (6) |
|
|
|
3 | (6) |
Part II Optical Tweezers |
|
|
|
9 | (32) |
|
|
|
2.1 A Condensed History of Optics |
|
|
9 | (5) |
|
|
14 | (5) |
|
|
19 | (13) |
|
|
20 | (1) |
|
2.3.2 Coulomb's Law and Gauss's Law |
|
|
20 | (4) |
|
|
24 | (2) |
|
2.3.4 Ampere's Law and Displacement Current |
|
|
26 | (3) |
|
2.3.5 Electromagnetism and Light |
|
|
29 | (3) |
|
2.4 Interaction of Light with Matter |
|
|
32 | (3) |
|
2.5 Interaction of Light with Metals |
|
|
35 | (2) |
|
|
37 | (4) |
|
|
41 | (40) |
|
|
|
41 | (1) |
|
|
42 | (2) |
|
3.3 From Maxwell's Equations to the Wave Equation |
|
|
44 | (4) |
|
3.3.1 Wave Equations in a Vacuum |
|
|
44 | (4) |
|
3.4 Solutions to the Wave Equation |
|
|
48 | (5) |
|
3.4.1 Plane Wave Solutions |
|
|
48 | (1) |
|
3.4.2 Properties of Plane Wave Solutions |
|
|
49 | (1) |
|
|
50 | (2) |
|
3.4.4 Wave Equations in a Dielectric (Non-Conducting) Medium |
|
|
52 | (1) |
|
3.5 Reflection and Transmission at an Interface |
|
|
53 | (14) |
|
|
55 | (4) |
|
|
59 | (1) |
|
3.5.2.1 Magnitudes of the transmitted and reflected fields |
|
|
61 | (1) |
|
3.5.2.2 E Perpendicular to plane of incidence |
|
|
61 | (1) |
|
3.5.2.3 E Parallel to plane of incidence |
|
|
64 | (1) |
|
3.5.2.4 Brewster's angle and total internal reflection |
|
|
66 | (1) |
|
3.6 Beam Solutions to the Wave Equation |
|
|
67 | (14) |
|
3.6.1 Gaussian Beam Solutions |
|
|
68 | (7) |
|
3.6.2 Higher-Order Solutions |
|
|
75 | (6) |
|
|
81 | (22) |
|
|
|
|
81 | (3) |
|
|
84 | (1) |
|
4.3 Ray Optics Description of Optical Tweezers |
|
|
85 | (9) |
|
4.4 The Electric Dipole Description of Optical Tweezers |
|
|
94 | (3) |
|
4.5 Generalized Lorenz-Mie Theory and Numerical Simulation |
|
|
97 | (1) |
|
|
98 | (2) |
|
|
100 | (3) |
|
5 Optical Tweezers Configurations |
|
|
103 | (34) |
|
|
|
103 | (2) |
|
5.2 Different Lasers Wave-Lengths for Different Applications |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
5.5 Controlling the Trap Position |
|
|
109 | (11) |
|
5.5.1 Steering Mirrors (Motorised) |
|
|
110 | (2) |
|
5.5.2 Acousto-Optic Deflectors |
|
|
112 | (1) |
|
5.5.3 Spatial Light Modulators |
|
|
112 | (3) |
|
5.5.4 Hologram Calculation |
|
|
115 | (1) |
|
|
115 | (1) |
|
5.5.4.2 Gratings and lenses |
|
|
116 | (4) |
|
5.6 Measuring Position and Force |
|
|
120 | (13) |
|
5.6.1 Quadrant Photodiodes |
|
|
121 | (2) |
|
5.6.2 Digital Video Cameras |
|
|
123 | (2) |
|
5.6.3 Calibration Using Stokes' Drag Method |
|
|
125 | (2) |
|
5.6.4 Calibration Using Equipartition Theorem |
|
|
127 | (1) |
|
5.6.5 Calibration Using Power Spectrum Analysis |
|
|
127 | (1) |
|
5.6.6 Measuring the Accuracy of Particle Position and Force in Optical Tweezers |
|
|
128 | (3) |
|
5.6.7 Stereoscopic Particle Tracking |
|
|
131 | (2) |
|
|
133 | (4) |
Part III Microrheology |
|
|
6 Introduction to Linear Rheology |
|
|
137 | (18) |
|
|
|
137 | (2) |
|
6.2 Linear Rheology for Simple Shear |
|
|
139 | (6) |
|
6.3 Simple Mechanical Models of Linear Viscoelastic Behaviour |
|
|
145 | (10) |
|
7 Statistical Mechanics and Diffusion Processes |
|
|
155 | (38) |
|
|
|
155 | (1) |
|
|
156 | (18) |
|
7.2.1 Velocity of a Brownian Particle |
|
|
158 | (4) |
|
|
162 | (2) |
|
7.2.3 Correlations and Response |
|
|
164 | (1) |
|
7.2.3.1 Response functions |
|
|
167 | (2) |
|
7.2.4 Simulation of Langevin Equations |
|
|
169 | (1) |
|
|
171 | (1) |
|
7.2.4.2 Determining the probability density function |
|
|
173 | (1) |
|
7.3 Probability Density Functions |
|
|
174 | (7) |
|
7.3.1 Ito's Formula and the Fokker-Planck Equation |
|
|
174 | (3) |
|
7.3.2 Ornstein-Uhlenbeck Process |
|
|
177 | (2) |
|
7.3.3 The Multivariate Case |
|
|
179 | (2) |
|
|
181 | (6) |
|
7.4.1 Escape from a Metastable Potential |
|
|
184 | (3) |
|
7.5 Microrheology and the Generalized Langevin Equation |
|
|
187 | (6) |
|
7.5.1 Measuring Viscosity in Newtonian Fluids |
|
|
188 | (1) |
|
|
189 | (4) |
|
8 Most Popular Microrheology Techniques |
|
|
193 | (26) |
|
Aristeidis Papagiannopoulos |
|
|
|
193 | (1) |
|
8.2 Theoretical Background of Microrheology |
|
|
194 | (6) |
|
8.3 Video Particle Tracking Microrheology |
|
|
200 | (9) |
|
8.4 Microrheology with Single Light Scattering |
|
|
209 | (2) |
|
8.5 Microrheology with Diffusing Wave Spectroscopy |
|
|
211 | (3) |
|
8.6 Microrheology with Magnetic Tweezers |
|
|
214 | (5) |
|
9 Microrheology with Optical Tweezers |
|
|
219 | (40) |
|
|
|
219 | (1) |
|
9.2 Optical Tweezers Calibration |
|
|
220 | (3) |
|
9.2.1 Spatial Calibration |
|
|
221 | (1) |
|
9.2.2 Elastic Constant Calibration |
|
|
222 | (1) |
|
9.3 Microrheology with Static Optical Tweezers |
|
|
223 | (12) |
|
9.3.1 Solving a Generalised Langevin Equation for Static OT |
|
|
223 | (5) |
|
|
228 | (1) |
|
9.3.2.1 Interpolation artefacts |
|
|
228 | (1) |
|
|
232 | (3) |
|
9.4 Active Microrheology with Optical Tweezers |
|
|
235 | (14) |
|
9.4.1 Entraining Flow Field |
|
|
236 | (7) |
|
|
243 | (6) |
|
9.5 A Rheological Interpretation of Optical Tweezers |
|
|
249 | (10) |
Part IV Review On Optical Tweezers Applications |
|
|
10 Optical Tweezers Outwith Microrheology |
|
|
259 | (16) |
|
|
|
259 | (1) |
|
|
260 | (3) |
|
10.3 Statistical Mechanics |
|
|
263 | (3) |
|
|
266 | (1) |
|
10.5 Counterpropagating Traps |
|
|
267 | (1) |
|
10.6 Single Molecule Studies |
|
|
268 | (2) |
|
10.7 Scanning Probe Microscopy |
|
|
270 | (2) |
|
10.8 Vacuum Trapping and Cooling |
|
|
272 | (1) |
|
|
273 | (2) |
Appendix: Evaluating the Fourier Transform |
|
275 | (8) |
|
|
|
|
275 | (2) |
|
A.2 Transforming from Time to Frequency with Minimal Artefacts |
|
|
277 | (6) |
References |
|
283 | (22) |
Index |
|
305 | |