Atnaujinkite slapukų nuostatas

Miniature Sorption Coolers: Theory and Applications [Kietas viršelis]

, , (University of Manchester, UK)
  • Formatas: Hardback, 217 pages, aukštis x plotis: 234x156 mm, weight: 600 g, 19 Tables, black and white; 93 Illustrations, black and white
  • Išleidimo metai: 27-Feb-2018
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1482260417
  • ISBN-13: 9781482260410
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 217 pages, aukštis x plotis: 234x156 mm, weight: 600 g, 19 Tables, black and white; 93 Illustrations, black and white
  • Išleidimo metai: 27-Feb-2018
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1482260417
  • ISBN-13: 9781482260410
Kitos knygos pagal šią temą:
In recent years, there have been significant developments in detector technologies in the field of astrophysics, requiring lower temperatures with simple self-contained refrigerators. Temperatures in the range of 1K to 50mK are now achieved by using dedicated closed-cycle miniature sorption coolers.

This book presents the theoretical and experimental knowledge necessary to design and build your own miniature refrigerators, including both single shot and continuous 1 K, 300 mK and 100 mK coolers, and details how to write the needed design software.

This text will be of interest to students and researchers, already familiar with basic physics and thermodynamics, who want to understand how sorption coolers and miniature dilution refrigerators work.

Features:





The first book dedicated to miniature sorption coolers Covers the basic thermodynamic concepts needed to understand the behavior of liquid helium-3 and liquid helium-4 Includes an appendix of Python example codes
List of Figures
xi
List of Tables
xvii
Preface xix
Authors xxi
Section I Background and Theory
Chapter 1 Background
3(36)
1.1 Review of Relevant Thermodynamics
5(17)
1.1.1 Differentials in thermodynamics
6(1)
1.1.2 The four laws of thermodynamics
7(1)
1.1.2.1 The first law of thermodynamics
7(1)
1.1.2.2 The second law of thermodynamics
8(1)
1.1.2.3 The third law of thermodynamics
8(1)
1.1.2.4 The zero-th law of thermodynamics
9(1)
1.1.3 The fundamental thermodynamic relation
9(1)
1.1.4 TdS equations
10(1)
1.1.5 Cooling
10(2)
1.1.6 Vapour pressure
12(1)
1.1.7 Latent heat
12(3)
1.1.8 Enthalpy and entropy
15(1)
1.1.9 Gibbs free energy
16(3)
1.1.10 Chemical potential
19(1)
1.1.11 Liquid helium
20(2)
1.2 Quantum Effects At Low Temperature
22(7)
1.2.1 Superconductivity
25(2)
1.2.2 Superfluid helium
27(2)
1.3 VACUUM AND GAS
29(3)
1.3.1 Gas equations
30(1)
1.3.2 Mean free path
31(1)
1.3.3 Transport properties: heat transfer of ideal gas
31(1)
1.4 Material Properties At Low Temperature
32(7)
1.4.1 Mechanical properties
33(1)
1.4.2 Thermal properties
34(5)
Chapter 2 Heat Transfer
39(22)
2.1 Mechanisms of Heat Transfer
39(9)
2.1.1 Conduction
39(2)
2.1.2 Convection
41(1)
2.1.3 Radiation
42(3)
2.1.4 Kapitza resistance
45(3)
2.2 Theory and Design of Gas Heat Switches
48(13)
2.2.1 Thermal conduction of helium gas
48(3)
2.2.2 Gas-gap heat switches
51(3)
2.2.3 Convective heat switches
54(7)
Chapter 3 Sorption Cryopumps
61(14)
3.1 Principles of Physisorption
62(7)
3.1.1 Van der Waals forces and the Lennard-Jones potential
62(2)
3.1.2 Physisorption theory
64(5)
3.2 Sorbent Materials
69(6)
3.2.1 Charcoal
70(5)
Section II Applications
Chapter 4 Miniature Sorption Coolers - Part 1
75(38)
4.1 Adiabatic Liquefaction
75(3)
4.2 General Principles of Operation
78(15)
4.2.1 The cryopump
79(1)
4.2.2 Helium pot
80(3)
4.2.3 Pumping tubes
83(1)
4.2.4 The condenser
83(4)
4.2.5 Heat switch
87(1)
4.2.6 Operation of a single-stage closed-cycle sorption fridge
88(2)
4.2.7 Charging gas
90(1)
4.2.8 Pumping speed
91(2)
4.3 1 K Systems
93(4)
4.3.1 Superfluid film breaker
94(3)
4.4 300 Mk Systems
97(1)
4.5 220 Mk Systems
98(3)
4.6 Continuous Systems
101(3)
4.6.1 Passive and active convective switched stage
101(3)
4.6.2 Continuous stage with switched condenser
104(1)
4.7 Design Process for A Single-Stage 3He Cooler
104(4)
4.7.1 Mechanical constraints
105(2)
4.7.2 Cryogenics constraints
107(1)
4.8 Design Process for A Double-Stage 4He-3He Cooler
108(5)
Chapter 5 Miniature Sorption Coolers - Part 2
113(60)
5.1 Introduction To Dilution Refrigeration Theory
113(11)
5.1.1 Physics of 3He and 4He mixtures
115(1)
5.1.2 Principle of operation of a dilution refrigerator
116(8)
5.1.3 Application to miniature dilution refrigerators
124(1)
5.2 Design of A Condensation Pumped 100 Mk System
124(20)
5.2.1 The continuous heat exchanger
129(3)
5.2.2 Design considerations for a condensation pumped dilution refrigerator
132(1)
5.2.3 Other condensation pumped dilution refrigerator designs
133(1)
5.2.3.1 Quasi-single shot design
133(4)
5.2.3.2 A continuously operated dilution system
137(2)
5.2.3.3 Dilution refrigerators with charcoal pumps - I
139(1)
5.2.3.4 Dilution refrigerators with charcoal pumps - II
139(3)
5.2.3.5 Dilution refrigerators with charcoal pumps - III
142(2)
5.3 Single-Shot 100 Mk Systems
144(10)
5.3.1 Single-shot system - I
146(1)
5.3.2 Single-shot system - II
146(2)
5.3.3 The physics of the single-shot dilution systems
148(4)
5.3.4 Improving the SSDS design
152(2)
5.4 Dilution Refrigerators With Circulating 4He
154(10)
5.4.1 Superfluid 4He pump
154(6)
5.4.2 Leiden refrigerator - I
160(2)
5.4.3 Leiden refrigerator - II
162(2)
5.5 Zero Gravity Dilution Refrigerators
164(9)
5.5.1 Planck's open cycle
164(3)
5.5.2 Closed cycle
167(6)
Section III Simulations
Chapter 6 Thermal Modeling
173(10)
6.1 Cooldown Modeling Approach
173(3)
6.2 Loading Calculations
176(2)
6.2.1 Conduction
176(1)
6.2.2 Radiation
177(1)
6.3 Full Cryostat Model
178(5)
Appendix A Helium Properties
183(14)
A.1 Latent Heat
184(2)
A.2 Vapour Pressure
186(2)
A.3 Phase Diagram Data
188(9)
A.3.1 4He phase diagram
188(4)
A.3.2 3He phase diagram
192(5)
Appendix B Python Codes
197(12)
B.1 Film Breaker Code
197(2)
B.2 3He Fridge Design Code
199(4)
B.3 Cryostat Cooldown Code
203(6)
Bibliography 209(8)
Index 217
Lucio Piccirillo is a Professor of Radio Astronomy Technology at the University of Manchester, UK, with extensive experience in designing and building cryogenic systems primarily used to cool astrophysical detectors. He has written more than 100 publications in international journals.

Gabriele Coppi and Andrew May are PhD students working under the supervision of Prof. Piccirillo.