Atnaujinkite slapukų nuostatas

Minimax and Applications Softcover reprint of the original 1st ed. 1995 [Minkštas viršelis]

Edited by , Edited by
  • Formatas: Paperback / softback, 296 pages, aukštis x plotis: 235x155 mm, weight: 501 g, XIV, 296 p., 1 Paperback / softback
  • Serija: Nonconvex Optimization and Its Applications 4
  • Išleidimo metai: 14-Oct-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461335590
  • ISBN-13: 9781461335597
  • Formatas: Paperback / softback, 296 pages, aukštis x plotis: 235x155 mm, weight: 501 g, XIV, 296 p., 1 Paperback / softback
  • Serija: Nonconvex Optimization and Its Applications 4
  • Išleidimo metai: 14-Oct-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461335590
  • ISBN-13: 9781461335597
Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention.

Recenzijos

` ... a valuable book carefully written in a clear and concise fashion. The survey papers give coherent and inspiring accounts ... coverage of algorithmic and applied topics ... is impressive. Both graduate students and researchers in fields such as optimization, computer science, production management, operations research and related areas will find this book to be an excellent source for learning about both classic and more recent developments in minimax and its applications. The editors are to be commended for their work in gathering these papers together.' Journal of Global Optimization, 11 (1997)

Daugiau informacijos

Springer Book Archives
5?.-
3. 15/4? ? ? ? 5?.-
4. 5/2? ? ? < 15/4?.-
5. ? < 2.5?.-
References.- A Study of On-Line Scheduling Two-Stage Shops.-
1.
Introduction.-
2. Definitions and Preliminaries.-
3. A Lower Bound for
O2??max.-
4. An Algorithm for O2??max.-
5. A Best Algorithm for
O2?pmtn??max.-
6. On Flow and Job Shops.-
7. Discussions.- References.-
Maxmin Formulation of the Apportionments of Seats to a Parliament.-
1.
Introduction.-
2. Concepts and models.-
3. Illustrative examples.-
4.
Discussion.- References.- On Shortest k-Edge Connected Steiner Networks with
RectilinearDistance.-
1. Introduction.-
2. Technical Preliminaries.-
3. Main
Results.- References.- Mutually Repellant Sampling.-
1. Introduction.-
2.
Mutually Repellant Sampling.-
3. Max-Min Distance Sampling.-
4.
Max-Min-Selection Distance Sampling.-
5. Max-Average Distance Sampling.-
6.
Lower Bounds.-
7. Applications and Open Questions.- References.- Geometry and
Local Optimality Conditions for Bilevel Programs with Quadratic Strictly
Convex Lower Levels.-
1. Introduction.-
2. Problem Statement and Geometry.-
3. Computing the Convex Cones.-
4. Number of Convex Cones.-
5. Stationary
Points and Local Minima.-
6. Conclusions and Future Work.- References.- The
Spherical One-Center Problem.-
1. Introduction.-
2. Main Result.-
3.
Conclusions.- References.- On Min-max Optimization of a Collection of
Classical Discrete Optimization Problems.-
1. Introduction.-
2. The Min-max
Spanning Tree Problem.-
3. The Min-max Resource Allocation Problem.-
4. The
Min-max Production Control Problem.-
5. Summary and Extensions.- References.-
Heilbronn Problem for Six Points in a Planar Convex Body.-
1. Introduction.-
2. Prerequisites.-
3. Proof of the Main Theorem.- References.- Heilbronn
Problem for Seven Points in a Planar Convex Body.-
1. Introduction.-
2.
Propositions and Proofs for Easier Cases.-
3. Configurations with Stability.-
4. Computing the Smallest Triangle.-
5. Open Problems.- References.- On the
Complexity of Min-Max Optimization Problems and Their Approximation.-
1.
Introduction.-
2. Definition.-
3. ?2P-Completeness Results.-
4. Approximation
Problems and Their Hardness.-
5. Nonapproximability Results.-
6. Conclusion
and Open Questions.- References.- A Competitive Algorithm for the Counterfeit
Coin Problem.-
1. Introduction.-
2. Some Lower Bounds of M(n : d).-
3. A
CompetitiveAlgorithm.-
4. Analysis of Competitiveness.-
5. Conclusion.-
References.- A Minimax ?ß Relaxation for Global Optimization.-
1.
Introduction.-
2. Problem Model.-
3. Relaxation Approach.-
4. A General ?ß
Relaxation Algorithm.-
5. A Minimax ?ß Relaxation Algorithm for COP.-
6.
Experimental Results.- References.- Minimax Problems in Combinatorial
Optimization.-
1. Introduction.-
2. Algorithmic Problems.-
3. Geometric
Problems.-
4. Graph Problems.-
5. Management Problems.-
6. Miscellaneous.-
Author Index.