Atnaujinkite slapukų nuostatas

Mixed Motives and their Realization in Derived Categories 1995 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 216 pages, aukštis x plotis: 235x155 mm, weight: 730 g, XVI, 216 p., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 1604
  • Išleidimo metai: 20-Jun-1995
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540594752
  • ISBN-13: 9783540594758
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 216 pages, aukštis x plotis: 235x155 mm, weight: 730 g, XVI, 216 p., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 1604
  • Išleidimo metai: 20-Jun-1995
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540594752
  • ISBN-13: 9783540594758
Kitos knygos pagal šią temą:
The conjectual theory of mixed motives would be a universal cohomology theory in arithmetic algebraic geometry. This text describes the approach to motives via their well-defined realizations, which includes a review of several known cohomology theories.

The conjectural theory of mixed motives would be a universal cohomology theory in arithmetic algebraic geometry. The monograph describes the approach to motives via their well-defined realizations. This includes a review of several known cohomology theories. A new absolute cohomology is introduced and studied.
The book assumes knowledge of the standard cohomological techniques in algebraic geometry as well as K-theory. So the monograph is primarily intended for researchers. Advanced graduate students can use it as a guide to the literature.

Daugiau informacijos

Springer Book Archives
Basic notions.- Derived categories of exact categories.- Filtered
derived categories.- Gluing of categories.- Godement resolutions.- Singular
cohomology.- De Rham cohomology.- Hodge realization.- 1-adic cohomology.-
Comparison functors: 1-adic versus singular realization.- The mixed
realization.- The tate twist.- ?-product and internal hom on D MR .- The
Künneth morphism.- The Bloch-Ogus axioms.- The Chern class of a line bundle.-
Classifying spaces.- Higher Chern classes.- Operations of correspondences.-
Grothendieck motives.- Polarizability.- Mixed motives.