Atnaujinkite slapukų nuostatas

Model-Based Control of a Robot Manipulator [Minkštas viršelis]

(Carnegie Mellon University), ,
  • Formatas: Paperback / softback, 254 pages, aukštis x plotis: 229x152 mm, weight: 449 g
  • Serija: Artificial Intelligence Series
  • Išleidimo metai: 07-Apr-1988
  • Leidėjas: MIT Press
  • ISBN-10: 0262511576
  • ISBN-13: 9780262511575
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 254 pages, aukštis x plotis: 229x152 mm, weight: 449 g
  • Serija: Artificial Intelligence Series
  • Išleidimo metai: 07-Apr-1988
  • Leidėjas: MIT Press
  • ISBN-10: 0262511576
  • ISBN-13: 9780262511575
Kitos knygos pagal šią temą:

Model-Based Control of a Robot Manipulator presents the first integrated treatment ofmany of the most important recent developments in using detailed dynamic models of robots to improvetheir control. The authors' work on automatic identification of kinematic and dynamic parameters,feedforward position control, stability in force control, and trajectory learning has significantimplications for improving performance in future robot systems. All of the main ideas discussed inthis book have been validated by experiments on a direct-drive robot arm.The book addresses theissues of building accurate robot models and of applying them for high performance control. It firstdescribes how three sets of models - the kinematic model of the links and the inertial models of thelinks and of rigid-body loads - can be obtained automatically using experimental data. These modelsare then incorporated into position control, single trajectory learning, and force control. The MITSerial Link Direct Drive Arm, on which these models were developed and applied to control, is one ofthe few manipulators currently suitable for testing such concepts.Contents: Introduction. DirectDrive Arms. Kinematic Calibration. Estimation of Load Inertial Parameters. Estimation of LinkInertial Parameters. Feedforward and Computed Torque Control. Model-Based Robot Learning. DynamicStability Issues in Force Control. Kinematic Stability Issues in Force Control. Conclusion.Chae Anis Research Staff Member, IBM T.J. Watson Research Center, Christopher Atkeson is an AssistantProfessor and John Hollerbach is an Associate Professor in the MIT Department of Brain and CognitiveSciences and the MIT Artificial Intelligence Laboratory. Model-Based Control of a Robot Manipulatoris included in the Artificial Intelligence Series edited by Patrick Winston and MichaelBrady.



The first integrated treatment of many of the most important recent developments in using detailed dynamic models of robots to improve their control.
Series Foreword xi
Preface xiii
Introduction
1(30)
Arm Trajectory Control
4(4)
Building Robot Models
8(8)
Motor Modeling
10(1)
Kinematic Calibration
11(1)
Load Estimation
12(2)
Link Estimation
14(2)
Position Control
16(4)
Independent-Joint PD Control
16(2)
Feedforward Controller
18(1)
Computed Torque Control
19(1)
Trajectory Learning
20(2)
Force Control
22(9)
Dynamic Instability in Force Control
23(1)
Cartesian-Based Position Control
24(3)
Cartesian-Based Force Control
27(4)
Direct Drive Arms
31(18)
Commercial Manipulators
32(5)
Direct Drive Arms
37(4)
MIT Serial Link Direct Drive Arm
41(8)
Kinematic Calibration
49(16)
Methods
50(2)
Identification Procedure
52(9)
Coordinate Representation
52(2)
Differential Relations
54(2)
The Endpoint Variation
56(1)
Estimating the Endpoint Location
57(3)
Iterative Estimation Procedure
60(1)
Results
61(2)
Discussion
63(2)
Estimation of Load Inertial Parameters
65(22)
Newton-Euler Formulation
67(6)
Deriving the Estimation Equations
67(4)
Estimating the Parameters
71(1)
Recovering Object and Grip Parameters
72(1)
Experimental Results
73(7)
Estimation on the PUMA Robot
73(6)
MIT Serial Link Direct Drive Arm
79(1)
Discussion
80(7)
Usefulness of the Algorithm
80(1)
Sources of Error
81(3)
Inaccurate Estimates of the Moments of Inertia
84(3)
Estimation of Link Inertial Parameters
87(14)
Estimation Procedure
90(4)
Formulation of Newton-Euler Equations
90(2)
Estimating the Link Parameters
92(2)
Experimental Results
94(3)
Identifiability of Inertial Parameters
97(1)
Discussion
98(3)
Feedforward and Computed Torque Control
101(23)
Control Algorithms
102(1)
Robot Controller Experiments
103(1)
Analog/Digital Hybrid Controller
104(14)
Computed Torque Controller Experiment
107(3)
Discussion
110(3)
Model-Based Robot Learning
113(2)
Kinematic Learning
115(3)
Trajectory Learning
118(2)
The Trajectory Learning Algorithm
120(1)
The Control Problem
120(3)
Feedforward Command Initialization
122(1)
Movement Execution
122(1)
Feedforward Command Modification
123(1)
Trajectory Learning Implementation
124(15)
Using Simplified Models
127(9)
Trajectory Learning Convergence
129(1)
Nonlinear Convergence Criteria
129(1)
Convergence Does Not Guarantee Good Performance
130(6)
Discussion
136(3)
Dynamic Stability Issues in Force Control
139(28)
Stability Problems
140(8)
General Stability Analysis
141(3)
Example of Unmodeled Dynamics
144(1)
Experimental Verification of Instability
145(3)
Compliant Coverings
148(1)
Adaptation to the Environment Stiffness
149(7)
Modeling
149(1)
Least Squares Algorithm
150(5)
Feasibility
155(1)
Joint Torque Control
156(10)
Dominant Pole
157(2)
One Link Force Control Experiments
159(7)
Discussion
166(1)
Kinematic Stability Issues in Force Control
167(28)
Intuitive Stability Analysis
170(5)
Hybrid Control
171(3)
Stiffness Control
174(1)
Root Loci, Simulations, and Experiments
175(10)
Hybrid Control
176(5)
Resolved Acceleration Force Control
181(3)
Stiffness Control
184(1)
Resolved Acceleration Force Control Experiments during Contact
185(6)
Experimental Setup
188(1)
Experimental Results
189(2)
Discussion
191(4)
Conclusion
195(6)
Assessment of the DDArm
196(2)
Further Issues
198(3)
Appendices
201(10)
Appendix 1: Integral Load Estimation Equations
201(3)
Appendix 2: Closed Form Dynamics
204(2)
Appendix 3: Stability Robustness
206(2)
Appendix 4: Operational Space and Resolved Acceleration
208(3)
References 211(16)
Index 227