Atnaujinkite slapukų nuostatas

El. knyga: Modeling and Control of Antennas and Telescopes

  • Formatas: PDF+DRM
  • Serija: Mechanical Engineering Series
  • Išleidimo metai: 11-Jul-2008
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387787930
  • Formatas: PDF+DRM
  • Serija: Mechanical Engineering Series
  • Išleidimo metai: 11-Jul-2008
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387787930

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Mechanical engineering, and engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of c- centrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of series editors, each an expert in one of the areas of concentration. The names of the series editors are listed on page vi of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. Preface This book is based on my experience with the control systems of antennas and radiotelescopes. Overwhelmingly, it is based on experience with the NASA Deep Space Network (DSN) antennas. It includes modeling the antennas, developing control algorithms, eld testing, system identi cation, performance evaluation, and 1 troubleshooting. My previous book emphasized the theoretical aspects of antenna control engineering, while this one describes the application part of the antenna control engineering.

Recenzijos

From the reviews:





"The book presents the authors research and experience in the area of antenna modeling, dynamics, and control. The analytical approach and the experimental approach to the subject are explained. The text is clearly written up-to-date authoritative reference describing the application part of the antenna control engineering. The monograph is primarily addressed to the antenna, telescope, and radiotelescope engineers, as well as researchers and students in motion control and mechatronics." (Lubomķr Bakule, Zentralblatt MATH, Vol. 1159, 2009)

This book is addressed to engineers and students interested in motion control and primarily to antenna, telescope, and radio telescope engineers. It is based on the authors experience with the NASA Deep Space Network antennas. The first part of the book covers the modeling of antennas, while the second part covers control . (IEEE Control Systems Magazine, Vol. 30, February, 2010)

1 Introduction
1(10)
1.1 Examples of Antennas and Telescopes
1(4)
1.1.1 NASA Deep Space Network
1(1)
1.1.2 Large Millimeter Telescope
1(1)
1.1.3 ESA Deep Space Antennas
2(1)
1.1.4 Atacama Large Millimeter Array
2(1)
1.1.5 Thirty Meter Telescope
3(1)
1.1.6 Green Bank Telescope
4(1)
1.1.7 Effelsberg Telescope
4(1)
1.2 Short Description of the Antenna Control System
5(2)
1.2.1 Velocity Loop
6(1)
1.2.2 Position-Loop
7(1)
1.3 Antenna and Telescope Literature
7(4)
References
8(3)
Part I Modeling
2 Analytical Models
11(20)
2.1 Rigid Antenna Model
11(1)
2.2 Structural Model
12(12)
2.2.1 Finite-Element Model
12(2)
2.2.2 Modal Model
14(3)
2.2.3 State-Space Model
17(2)
2.2.4 Models with Rigid Body Modes
19(2)
2.2.5 Discrete-Time Model
21(3)
2.3 Drive Model
24(2)
2.3.1 Motor Model
24(1)
2.3.2 Reducer Model
25(1)
2.3.3 Drive Model
25(1)
2.4 Velocity Loop Model
26(1)
2.5 Drive Parameter Study
26(5)
2.5.1 Drive Stiffness Factor
27(1)
2.5.2 Drive Inertia Factor
28(2)
References
30(1)
3 Models from Identification
31(14)
3.1 White Noise Testing of the Antenna
31(7)
3.1.1 Purpose and Conditions
31(1)
3.1.2 Test Input and Output
32(1)
3.1.3 Test Configuration
32(2)
3.1.4 Data Processing
34(3)
3.1.5 Basic Relationships for the Discrete-Time Data
37(1)
3.2 Identification of the Velocity Loop Model
38(7)
3.2.1 Description of the Velocity Loop Model
39(1)
3.2.2 Identification of the Velocity Loop Model
39(2)
3.2.3 A Comparison of the Analytical and Identified Models
41(1)
3.2.4 Azimuth Model Depends on the Antenna Elevation Position
41(2)
3.2.5 Fundamental Frequency Depends on Antenna Diameter
43(1)
References
44(1)
4 Model Reduction
45(6)
4.1 Why Reduction?
45(1)
4.2 Balanced Model Reduction
45(2)
4.3 Modal Model Reduction
47(2)
4.3.1 Norms of a Single Mode
47(1)
4.3.2 Norms of a Structure
48(1)
4.4 Antenna Model Reduction
49(2)
References
50(1)
5 Wind Disturbance Models
51(22)
5.1 Steady-State Wind Disturbance Model
51(8)
5.1.1 Dimensionless Wind Torques
52(2)
5.1.2 Obtaining Wind Torques from Field Data
54(2)
5.1.3 Comparing Wind Tunnel Results and the Field Data
56(3)
5.2 Wind Gusts Disturbance Models
59(14)
5.2.1 Model of Wind Forces Acting on the Dish
60(4)
5.2.2 Model of Wind Torque Acting at the Drives
64(1)
5.2.3 Algorithm to Generate a Time Profile of Wind Gusts Torque
65(1)
5.2.4 Model of Wind at the Velocity Input
66(1)
5.2.5 Algorithm to Generate Time Profile of Wind at the Velocity Input
67(1)
5.2.6 The Equivalence of Wind Torque and Wind Velocity Models
67(1)
5.2.7 Closed Loop Pointing Accuracy with Wind Gusts Disturbances
68(2)
References
70(3)
Part II Control
6 Preliminaries to Control
73(8)
6.1 Performance Criteria
73(4)
6.2 Transformations of the Velocity Loop Model
77(4)
6.2.1 Transformation into Modal Coordinates
78(1)
6.2.2 Antenna Position as the First State
78(1)
6.2.3 Augmentation with the Integral of the Position
78(1)
References
79(2)
7 PI and Feedforward Controllers
81(14)
7.1 Properties of the PI Controller
81(5)
7.1.1 Closed Loop Transfer Functions
83(1)
7.1.2 The Proportional Gain Analysis
83(2)
7.1.3 The Integral Gain Analysis
85(1)
7.2 PI Controller Tuning Steps
86(1)
7.3 Closed Loop Equations of a Flexible Antenna with a PI Controller
87(1)
7.4 Performance of the PI Controller
87(4)
7.4.1 Performance Characteristics
87(3)
7.4.2 Limits of Performance
90(1)
7.5 Feedforward Controller
91(4)
References
93(2)
8 LQG Controller
95(40)
8.1 Properties of the LQC Controller
95(13)
8.1.1 LQG Controller Description
95(3)
8.1.2 Tracking LQG Controller
98(3)
8.1.3 Closed Loop Equations of the Tracking LQG Control System
101(1)
8.1.4 LQG Weights
101(3)
8.1.5 Resemblance of the LQG and PI Controllers
104(1)
8.1.6 Properties of the LQG Weights
105(2)
8.1.7 Limits of the LQG Gains
107(1)
8.2 LQG Controller Tuning Steps
108(2)
8.3 Performance of the LQG Controller
110(7)
8.3.1 Summary of the Antenna Servo Performance Characteristics
110(1)
8.3.2 Performance of the DSN Antennas with LQG Controllers
111(2)
8.3.3 Disturbance Rejection Properties and the Position-Loop Bandwidth
113(2)
8.3.4 Performance Comparison of the PI and LQG Controllers
115(2)
8.3.5 Limits of Performance
117(1)
8.4 Tuning a LQG Controller Using GUI
117(7)
8.4.1 Selecting LQG Weights
117(2)
8.4.2 GUI for the LQG Controller Tuning
119(2)
8.4.3 Fine Tuning of the LQG Controller
121(3)
8.5 LQG Controller in the Velocity Loop
124(11)
8.5.1 Position Loop Bandwidth Depends on the Velocity Loop
124(3)
8.5.2 Four Control Configurations
127(1)
8.5.3 PP Control System
127(2)
8.5.4 PL Control System
129(3)
8.5.5 LP Control System
132(1)
8.5.6 LL Control System
132(1)
References
133(2)
9 H∞ Controller
135(10)
9.1 Definition and Gains
135(3)
9.2 Tracking H∞ Controller
138(1)
9.3 Closed-Loop Equations of the Tracking H∞ Controller
138(1)
9.4 34-M Antenna Example
139(2)
9.5 Limits of Performance
141(4)
References
142(3)
10 Single Loop Control
145(12)
10.1 Rigid Antenna
145(4)
10.1.1 Rigid Antenna with Velocity and Position Loops
145(2)
10.1.2 Rigid Antenna with Position Loop Only
147(1)
10.1.3 Simulation Results
148(1)
10.2 34-M Antenna
149(8)
References
155(2)
11 Non-Linear Control
157(26)
11.1 Velocity and Acceleration Limits
157(9)
11.1.1 Command Preprocessor
157(5)
11.1.2 Anti-Windup Technique
162(4)
11.2 Friction
166(8)
11.2.1 Dry Friction Model
168(2)
11.2.2 Low-Velocity Tracking Using Dither
170(3)
11.2.3 Non-linear Simulation Results
173(1)
11.3 Backlash
174(9)
11.3.1 Backlash and Its Prevention
175(2)
11.3.2 The Velocity Loop Model with Friction and Backlash
177(4)
References
181(2)
12 RF Beam Control
183(28)
12.1 Selecting the RF Beam Controller
183(4)
12.2 Monopulse
187(7)
12.2.1 Command following
187(1)
12.2.2 Disturbance Rejection Properties
188(2)
12.2.3 Stability Due to the Gain Variation
190(1)
12.2.4 Performance Simulations: Linear Model
190(1)
12.2.5 Performance Simulations: Nonlinear Model
191(3)
12.3 Scanning
194(17)
12.3.1 Conical Scan
194(6)
12.3.2 Sliding Window Conscan
200(1)
12.3.3 Lissajous Scan
201(3)
12.3.4 Rosette Scan
204(2)
12.3.5 Performance Evaluation
206(3)
References
209(2)
13 Track-Level Compensation
211(12)
13.1 Description of the Track-Level Problem
211(2)
13.2 Collection and Processing of the Inclinometer Data
213(2)
13.3 Estimating Azimuth Axis Tilt
215(2)
13.4 Creating the TLC Table
217(2)
13.5 Determining Pointing Errors from the TLC Table
219(2)
13.6 Antenna Pointing Improvement Using the TLC Table
221(2)
References
222(1)
Index 223