Atnaujinkite slapukų nuostatas

Modeling and Design of Flexible Pavements and Materials 1st ed. 2018 [Kietas viršelis]

  • Formatas: Hardback, 693 pages, aukštis x plotis: 235x155 mm, 167 Illustrations, color; 160 Illustrations, black and white; XXI, 693 p. 327 illus., 167 illus. in color., 1 Hardback
  • Išleidimo metai: 11-Oct-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319584413
  • ISBN-13: 9783319584416
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 693 pages, aukštis x plotis: 235x155 mm, 167 Illustrations, color; 160 Illustrations, black and white; XXI, 693 p. 327 illus., 167 illus. in color., 1 Hardback
  • Išleidimo metai: 11-Oct-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319584413
  • ISBN-13: 9783319584416
Kitos knygos pagal šią temą:
This textbook lays out the state of the art for modeling of asphalt concrete as the major structural component of flexible pavements. The text adopts a pedagogy in which a scientific approach, based on materials science and continuum mechanics, predicts the performance of any configuration of flexible roadways subjected to cyclic loadings. The authors incorporate state-of the-art computational mechanics to predict the evolution of material properties, stresses and strains, and roadway deterioration. Designed specifically for both students and practitioners, the book presents fundamentally complex concepts in a clear and concise way that aids the roadway design community to assimilate the tools for designing sustainable roadways using both traditional and innovative technologies.
1 Introduction
1(26)
1.1 Historical Introduction
1(13)
1.2 Technical Introduction
14(7)
1.3 A Road map for Using This Text
21(6)
References
24(3)
Part I Materials
2 Asphalt Binders
27(52)
2.1 Introduction
27(2)
2.2 Production of Asphalt Binders
29(1)
2.3 Chemical Properties
30(18)
2.3.1 The Need to Understand Binder Chemistry
30(2)
2.3.2 Attributes of Chemical Properties and Methods of Measurement
32(8)
2.3.3 Microstructure of Asphalt Binders
40(6)
2.3.4 Relationship Between Microstructure and Engineering Properties of Asphalt Binder
46(2)
2.3.5 Concluding Thoughts on the Chemical Properties of Asphalt Binders
48(1)
2.4 Aging in Asphalt Binders
48(4)
2.4.1 Steric Hardening
49(1)
2.4.2 Volatilization and Oxidative Aging
50(1)
2.4.3 Simulating Aging in Asphalt Binders
51(1)
2.5 Mechanical Properties
52(18)
2.5.1 Scope
52(1)
2.5.2 Significance of Mechanical Properties of Binder and Challenges
53(2)
2.5.3 Time Dependency
55(5)
2.5.4 Temperature Dependency
60(5)
2.5.5 Age Dependency
65(1)
2.5.6 Typical Measurement Techniques
65(3)
2.5.7 Desired Binder Properties to Produce Durable Asphalt Mixtures and PG System
68(1)
2.5.8 Limitations of the PG System
69(1)
2.6 Properties of Liquid Asphalt Binder
70(2)
2.7 Exercises
72(7)
Additional Reading
75(1)
References
76(3)
3 Aggregates
79(44)
3.1 Introduction
79(1)
3.2 Sources of Mineral Aggregates
80(2)
3.3 Physical Attributes of Mineral Aggregates
82(37)
3.3.1 Size and Gradation
82(10)
3.3.2 Cleanliness
92(4)
3.3.3 Toughness and Hardness
96(5)
3.3.4 Durability or Soundness
101(3)
3.3.5 Shape, Angularity, and Texture
104(10)
3.3.6 Impact of Aggregate Characteristics on Engineering Properties
114(3)
3.3.7 Absorption
117(2)
3.4 Exercises
119(4)
References
120(3)
4 Chemical and Mechanical Processes Influencing Adhesion and Moisture Damage in Hot Mix Asphalt Pavements
123(64)
4.1 Background
123(5)
4.1.1 Detachment
123(1)
4.1.2 Displacement
124(1)
4.1.3 Spontaneous Emulsification
125(1)
4.1.4 Pore Pressure
125(1)
4.1.5 Hydraulic Scour
126(1)
4.1.6 pH Instability
127(1)
4.1.7 Environmental Effects on the Aggregate-Asphalt System
128(1)
4.2 Adhesion Theories
128(10)
4.2.1 Chemical Reaction
129(6)
4.2.2 Surface Energy and Molecular Orientation
135(1)
4.2.3 Mechanical Adhesion
136(2)
4.3 Cohesion Theories
138(1)
4.4 Combining Theories
139(1)
4.5 Nature of Asphalt-Aggregate Interaction
140(9)
4.5.1 Adhesive Failure Versus Cohesive Failure
140(2)
4.5.2 Effect of Aggregate Characteristics
142(3)
4.5.3 Calculation of Asphalt-Aggregate Bond Strength
145(4)
4.6 Thermodynamic Approach
149(9)
4.7 Application of Surface Energy to Predict Moisture Damage in Asphalt Mixtures
158(2)
4.8 Effect of Asphalt Composition on Adhesion
160(5)
4.8.1 Asphalt Composition
160(1)
4.8.2 Elemental Composition
160(1)
4.8.3 Molecular Structure
160(1)
4.8.4 Bonds Among Asphalt Molecules
160(1)
4.8.5 Polar Versus Nonpolar Molecules
161(1)
4.8.6 Asphalt Model
162(1)
4.8.7 Multifunctional Organic Molecules
163(2)
4.9 Asphalt Chemistry and Adhesion
165(7)
4.9.1 Effect of Aggregate Properties on Adhesion
165(1)
4.9.2 Pore Volume and Surface Area
166(1)
4.9.3 pH of Contacting Water
166(6)
4.10 Surface Potential
172(1)
4.11 SHRP Research on Aggregate Surface Chemistry
173(1)
4.12 SHRP Adhesion Model
174(1)
4.13 SHRP Stripping Model
174(1)
4.14 Ways to Improve Adhesion
174(3)
4.14.1 Interaction of Acidic Aggregates and Asphalt with Alkaline Amine Compounds
174(1)
4.14.2 Effect of Hydrated Lime on Adhesive Bond
175(1)
4.14.3 Other Chemical Treatments
176(1)
4.15 Dusty and Dirty Aggregates
177(1)
4.15.1 General Mechanisms of Bond Disruption with Dirty or Dusty Aggregates
177(1)
4.15.2 Modification of Dusty and Dirty Aggregates to Improve Asphalt-Aggregate Interaction
178(1)
4.16 Exercises
178(1)
4.17 Summary and Conclusions
179(8)
References
180(7)
5 Modifiers and Fillers
187(50)
5.1 Introduction
187(4)
5.2 Principles of Modification
191(3)
5.2.1 Acid Modification
191(1)
5.2.2 Palierne Model
192(1)
5.2.3 Suspension Limit
193(1)
5.3 Application of Modification to Bitumen
194(2)
5.3.1 Compatibility
194(1)
5.3.2 Structure of Polymer-Modified Bitumen
195(1)
5.3.3 Practical Consequences
195(1)
5.4 Extenders
196(3)
5.4.1 Sulfur
196(3)
5.5 Additives that Promote Improved Bond Between Aggregate and Binder
199(4)
5.6 Fillers
203(21)
5.6.1 Active Filler: Hydrated Lime
203(2)
5.6.2 Hydrated Lime: Aggregate Surface Modifier
205(1)
5.6.3 Rheology of Filler Stiffening Effect
206(5)
5.6.4 Effects of Hydrated Lime on Low-Temperature Flow Properties
211(3)
5.6.5 Influence of Filler on Damage in Asphalt Mastic
214(4)
5.6.6 Effect of Hydrated Lime on Microstructural Model of Asphalt
218(1)
5.6.7 Hydrated Lime: Chemical and Physicochemical Interactions
219(3)
5.6.8 Other Literature to Support Lime-Bitumen Interaction
222(2)
5.7 Polymer Modification
224(5)
5.7.1 Plastomers
224(1)
5.7.2 Thermoplastic Elastomers
225(4)
5.8 Summary
229(1)
5.9 Exercises
230(7)
References
231(6)
6 Mastics and Mortars
237(24)
6.1 Introduction
237(1)
6.2 Mastics
238(9)
6.2.1 Mechanical Role of Filler Particles in Mastic
239(4)
6.2.2 Physicochemical Interactions of Filler Particles in Mastic
243(3)
6.2.3 Considerations During Mixture Design
246(1)
6.3 Mortars or Fine Aggregate Matrix
247(9)
6.3.1 Applications of Fine Aggregate Matrix
247(6)
6.3.2 Design of Fine Aggregate Matrix
253(3)
6.4 Summary
256(1)
6.5 Exercises
256(5)
References and Additional Reading
257(4)
7 Asphalt Mixtures
261(22)
7.1 Introduction
261(2)
7.2 Methods to Fabricate Laboratory Specimens
263(6)
7.3 Design for Optimal Binder Content
269(10)
7.3.1 What is Optimal Binder Content?
269(1)
7.3.2 Mixture Volumetrics
270(4)
7.3.3 Examples of Methods to Determine Optimum Binder Content
274(5)
7.4 Summary
279(1)
7.5 Exercises
279(4)
References
281(2)
8 Failure Mechanisms and Methods to Estimate Material Resistance to Failure
283(58)
8.1 Introduction
283(1)
8.2 Understanding the Role of Pavement Versus Materials in Distress Evolution
284(1)
8.3 Failure Mechanisms
285(16)
8.3.1 Rutting
286(4)
8.3.2 Fatigue Cracking
290(3)
8.3.3 Transverse Cracking
293(3)
8.3.4 Moisture-Induced Damage
296(3)
8.3.5 Aging
299(1)
8.3.6 Bleeding or Flushing
300(1)
8.4 Terminology and Typical Approaches to Characterize Distresses
301(3)
8.4.1 Measuring Performance Indicators and Material Properties
301(2)
8.4.2 Concept of Continuum
303(1)
8.5 Examples of Test and Analytical Methods to Characterize Properties and Distresses
304(32)
8.5.1 Complex Modulus
304(5)
8.5.2 Rutting
309(6)
8.5.3 Fatigue Cracking
315(13)
8.5.4 Low Temperature Cracking
328(3)
8.5.5 Moisture-Induced Damage
331(5)
8.6 Exercises
336(5)
References
336(5)
Part II Mechanics
9 Mechanics of Continuous Solids
341(48)
9.1 Introduction
341(1)
9.2 Mathematical Preliminaries
341(11)
9.2.1 Index Notation
342(2)
9.2.2 Scalars, Vectors, and Tensors
344(2)
9.2.3 Linearity
346(1)
9.2.4 Laplace Transforms
346(2)
9.2.5 Carson Transforms
348(1)
9.2.6 The Heaviside Step Function
348(1)
9.2.7 The Convolution Integral
348(2)
9.2.8 The Dirac Delta Function
350(1)
9.2.9 The Divergence Theorem
351(1)
9.2.10 The Reynolds Transport Theorem
351(1)
9.3 Kinematics and Strain
352(3)
9.4 Kinetics and Stress
355(20)
9.4.1 The Traction Vector
355(1)
9.4.2 The Stress Tensor
356(2)
9.4.3 Stress Transformations
358(2)
9.4.4 Principal Stresses
360(2)
9.4.5 Deviatoric Stresses
362(2)
9.4.6 Stress Analysis Using Mohr's Circle
364(11)
9.5 Conservation Laws
375(6)
9.5.1 Conservation of Mass
376(1)
9.5.2 Conservation of Charge
376(1)
9.5.3 Conservation of Momentum
376(2)
9.5.4 Conservation of Energy
378(2)
9.5.5 The Entropy Production Inequality
380(1)
9.6 Summary
381(1)
9.7 Problems
382(7)
References
387(2)
10 One-Dimensional Constitutive Theory
389(30)
10.1 Introduction
389(2)
10.2 One-Dimensional Constitutive Experiments
391(3)
10.3 Elastic Material Model
394(3)
10.4 Viscous Material Model
397(2)
10.5 Viscoelastic Material Model
399(10)
10.6 Elasto-Plastic Material Model
409(2)
10.7 Viscoplastic Material Model
411(1)
10.8 Thermo-and Hygro-Type Material Models
411(4)
10.9 Summary
415(1)
10.10 Problems
416(3)
References
417(2)
11 Elasticity and Thermoelasticity
419(42)
11.1 Introduction
419(1)
11.2 Multidimensional Linear Elasticity
419(26)
11.2.1 The Linear Elastic Boundary Value Problem
420(4)
11.2.2 Thermodynamic Constraints on Elastic Material Behavior
424(2)
11.2.3 Material Symmetry
426(9)
11.2.4 Solution Techniques for the Linear Elastic Boundary Value Problem
435(5)
11.2.5 Micromechanics
440(5)
11.3 Multidimensional Linear Thermoelasticity
445(1)
11.4 Thermodynamic Constraints on Thermoelastic Material Behavior
446(2)
11.5 The Linear Thermoelastic Initial Boundary Value Problem
448(6)
11.5.1 Two-Way Coupled Thermoelasticity
450(1)
11.5.2 One-Way Coupled Thermoelasticity
450(4)
11.6 Modeling the Effects of Moisture on Roadway Performance
454(3)
11.7 Summary
457(1)
11.8 Problems
457(4)
References
459(2)
12 Viscoelasticity and Thermoviscoelasticity
461(70)
12.1 Introduction
461(1)
12.2 Multi-dimensional Linear Viscoelasticity
462(11)
12.2.1 The Linear Viscoelastic Initial Boundary Value Problem
464(2)
12.2.2 Thermodynamic Constraints on Linear Viscoelastic Material Behavior
466(4)
12.2.3 Material Symmetry
470(3)
12.3 Methods for Solving Viscoelastic IBVPs
473(12)
12.3.1 Direct Analytic Method
474(3)
12.3.2 Separable Correspondence Principle
477(6)
12.3.3 Laplace Transform Correspondence Principles
483(2)
12.4 Material Property Characterization of Viscoelastic Media
485(19)
12.4.1 Creep Tests
486(4)
12.4.2 Ramp Tests
490(4)
12.4.3 Relaxation Tests
494(1)
12.4.4 Accelerated Characterization Tests
495(7)
12.4.5 Time-Temperature Superposition Tests
502(2)
12.5 Mechanical Analogs for Creep Compliances and Relaxation Moduli
504(3)
12.5.1 The Kelvin Model for Creep Compliances
504(1)
12.5.2 The Wiechert Model for Relaxation Moduli
505(1)
12.5.3 Power Laws
506(1)
12.6 Procedures for Curve Fitting
507(7)
12.6.1 Prony Series Model
507(2)
12.6.2 Power Law Model
509(1)
12.6.3 Frequency Sweeps
510(4)
12.7 Multi-dimensional Linear Thermoviscoelasticity
514(7)
12.7.1 Thermodynamic Constraints on Thermoviscoelastic Material Behavior
515(3)
12.7.2 The Linear Thermoviscoelastic Initial Boundary Value Problem
518(1)
12.7.3 Two-Way Coupled Linear Thermoviscoelasticity
518(2)
12.7.4 One-Way Coupled Thermoviscoelasticity
520(1)
12.8 Nonlinear Viscoelasticity
521(3)
12.9 Summary
524(1)
12.10 Problems
524(7)
References
528(3)
13 Plasticity, Viscoplasticity, and Fracture
531(62)
13.1 Introduction
531(2)
13.2 Multi-dimensional Plasticity
533(33)
13.2.1 The Stress-Elastic Strain Relationship
534(2)
13.2.2 The Yield Criterion
536(12)
13.2.3 The Flow Rule
548(7)
13.2.4 The Workhardening Rule
555(11)
13.3 The Elastoplastic Initial Boundary Value Problem
566(1)
13.4 Multi-dimensional Viscoplasticity
567(3)
13.5 Multi-dimensional Thermoviscoplasticity
570(8)
13.5.1 Thermodynamic Constraints on Thermoviscoplastic Material Behavior
572(2)
13.5.2 The Thermoviscoplastic Initial Boundary Value Problem
574(4)
13.6 Methods for Modeling Cracking
578(9)
13.6.1 Damage Mechanics
580(1)
13.6.2 Fracture Mechanics
581(6)
13.7 Summary
587(1)
13.8 Problems
587(6)
References
591(2)
14 Computational Methods for Roadway Analysis and Design
593(44)
14.1 Introduction
593(4)
14.2 Fundamentals of the Finite Element Method
597(22)
14.2.1 Construction of the Heat Transfer and Moisture Finite Element Platforms
600(2)
14.2.2 Construction of the Finite Element Heat Transfer Equations for a Single Element
602(3)
14.2.3 Construction of the Mechanics Finite Element Platform
605(1)
14.2.4 Construction of an Incrementalized Variational Form of the Mechanics Field Equations
606(3)
14.2.5 Construction of the Finite Element Mechanics Equations for a Single Element
609(2)
14.2.6 Choosing an Appropriate Element
611(2)
14.2.7 Assembly of the Global Mechanics Finite Element Equations
613(2)
14.2.8 Accounting for Nonlinearity with Newton Iteration
615(4)
14.3 Implementation of Constitutive and Fracture Models to a Mechanics Finite Element Code
619(15)
14.3.1 Implementation of Plasticity
619(7)
14.3.2 Implementation of Viscoelasticity
626(6)
14.3.3 Implementation of a Cohesive Zone Model
632(2)
14.4 Summary
634(1)
14.5 Problems
635(2)
15 Computational Modeling Applications
637(54)
15.1 Introduction
637(1)
15.2 Computational Techniques for Road way Design and Analysis Using the Finite Element Method
637(52)
15.2.1 Computational Micromechanics
637(3)
15.2.2 Simulating the Resilient Modulus Test
640(4)
15.2.3 Multi-scaling
644(45)
15.3 Summary
689(1)
15.4 Problems
689(2)
References
690(1)
Index 691
Dallas N. Little is the E. B. Snead Chair Professor and Regents Professor in the Zachry Department of Civil Engineering at Texas A&M University, where he has been a faculty member since completing his Ph.D. in 1979. Dr. Little holds an M.S. from the University of Illinois at Urbana-Champaign (1973) and a B.S.C.E. from the United States Air Force Academy in 1970. He has been a registered professional engineer since 1976.

David H. Allen is currently Director of the Center for Railway Research within the Texas A&M Transportation Institute.  Prior to that he was a faculty member at Virginia Tech (1980-81), Texas A&M University (1981-2002), The University of Nebraska-Lincoln (2002-10), and The University of Texas-Pan American (2010-13).  He obtained his B.S., M. Eng., and Ph.D. degrees from Texas A&M University.

Amit Bhasin is a faculty member in the Department of Civil, Architectural, and Environmental Engineering at The University of Texas-Austin. He has been in this position since 2008. He received his B. Tech. In Civil Engineering from IIT Varanasi, India, and his M.S. and Ph.D. from Texas A&M University (2003, 2006).