Atnaujinkite slapukų nuostatas

Modelling the Dynamics of Biological Systems: Nonlinear Phenomena and Pattern Formation Softcover reprint of the original 1st ed. 1995 [Minkštas viršelis]

Edited by , Edited by
  • Formatas: Paperback / softback, 294 pages, aukštis x plotis: 235x155 mm, weight: 480 g, XII, 294 p., 1 Paperback / softback
  • Serija: Springer Series in Synergetics 65
  • Išleidimo metai: 16-Dec-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642792928
  • ISBN-13: 9783642792922
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 294 pages, aukštis x plotis: 235x155 mm, weight: 480 g, XII, 294 p., 1 Paperback / softback
  • Serija: Springer Series in Synergetics 65
  • Išleidimo metai: 16-Dec-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642792928
  • ISBN-13: 9783642792922
Kitos knygos pagal šią temą:
The development of a proper description of the living world today stands as one of the most significant challenges to physics. A variety of new experimental techniques in molecular biology, microbiol ogy, physiology and other fields of biological research constantly expand our knowledge and enable us to make increasingly more detailed functional and structural descriptions. Over the past decades, the amount and complexity of available information have multiplied dramatically, while at the same time our basic understanding of the nature of regulation, behavior, morphogenesis and evolution in the living world has made only modest progress. A key obstacle is clearly the proper handling of the available data. This requires a stronger emphasis on mathematical modeling through which the consistency of the adopted explanations can be checked, and general princi ples may be extracted. As an even more serious problem, however, it appears that the proper physical concepts for the developmen

t of a theoretically oriented biology have not hitherto been available. Classical mechanics and equilibrium thermody namics, for instance, are inappropriate and useless in some of the most essen tial biological contexts. Fortunately, there is now convincing evidence that the concepts and methods of the newly developed fields of nonlinear dynam ics and complex systems theory, combined with irreversible thermodynamics and far-from-equilibrium statistical mechanics will enable us to move ahead with many of these problems.

I Pattern Formation in Chemical Systems.- Spiral Waves in Bounded Excitable Media.- Dynamics of Oscillatory Chemical Systems.- Localized Turing and Turing-Hopf Patterns.- II Biological Patterns.- Domains and Patterns in Biological Membranes.- Modelling Pattern Formation on Primate Visual Cortex.- III Dynamics of Biological Macromolecules.- Channel Function and Channel-Lipid Bilayer Interactions.- Dynamics of Nucleic Acids and Nucleic Acid:Protein Complexes.- IV Physiological Control Systems.- Models of Renal Blood Flow Autoregulation.- Dynamics of Bone Remodelling.- Modelling Heart Rate Variability Due to Respiration and Baroreflex.- A Dynamical Approach to Normal and Parkinsonian Tremor.- V Complex Ecologies and Evolution.- Dynamics of Complex Ecologies.- A Self-Organized Critical Model for Evolution.

Ole G. Mouritsen ist Wissenschaftler und Professor für Biophysik an der Universität von Süd-Dänemark sowie dort Direktor des Zentrums für Physik der Biomembran. Er ist Mitglied der Royal Danish Academy of Sciences and Letters, der Danish Academy of Technical Sciences und der Danish Gastronomical Academy. Für seine Arbeiten wurde er mit zahlreichen wichtigen Preisen ausgezeichnet, so mit dem Danish National Prize for Research Communication (2007) und dem British Royal Society of Chemistry Bourke Award (2008). Ein besonderes Anliegen sind ihm neben der wissenschaftlichen Arbeit populärwissenschaftliche Bücher, neben Sushi hat er auch eines über die für Küche und Medizin interessanten Braunalgen veröffentlicht.

Daugiau informacijos

Springer Book Archives
I Pattern Formation in Chemical Systems.- Spiral Waves in Bounded Excitable Media.- Dynamics of Oscillatory Chemical Systems.- Localized Turing and Turing-Hopf Patterns.- II Biological Patterns.- Domains and Patterns in Biological Membranes.- Modelling Pattern Formation on Primate Visual Cortex.- III Dynamics of Biological Macromolecules.- Channel Function and Channel-Lipid Bilayer Interactions.- Dynamics of Nucleic Acids and Nucleic Acid:Protein Complexes.- IV Physiological Control Systems.- Models of Renal Blood Flow Autoregulation.- Dynamics of Bone Remodelling.- Modelling Heart Rate Variability Due to Respiration and Baroreflex.- A Dynamical Approach to Normal and Parkinsonian Tremor.- V Complex Ecologies and Evolution.- Dynamics of Complex Ecologies.- A Self-Organized Critical Model for Evolution.