Introduction and Historical Notes |
|
ix | |
|
|
1 | (54) |
|
1.1 Groups G = SL2(R), SL2(C), Sp*1,1, and SL2(H) |
|
|
2 | (3) |
|
1.2 Compact Subgroups K ⊂ G, Cartan Decompositions |
|
|
5 | (4) |
|
1.3 Iwasawa Decomposition G = PK = NA+K |
|
|
9 | (4) |
|
1.4 Some Convenient Euclidean Rings |
|
|
13 | (2) |
|
1.5 Discrete Subgroups Γ ⊂ G, Reduction Theory |
|
|
15 | (4) |
|
1.6 Invariant Measures, Invariant Laplacians |
|
|
19 | (3) |
|
1.7 Discrete Decomposition of L2(Γ\G/K) Cuspforms |
|
|
22 | (2) |
|
1.8 Pseudo-Eisenstein Series |
|
|
24 | (3) |
|
|
27 | (5) |
|
1.10 Meromorphic Continuation of Eisenstein Series |
|
|
32 | (3) |
|
1.11 Truncation and Maaß-Selberg Relations |
|
|
35 | (9) |
|
1.12 Decomposition of Pseudo-Eisenstein Series |
|
|
44 | (5) |
|
1.13 Plancherel for Pseudo-Eisenstein Series |
|
|
49 | (3) |
|
1.14 Automorphic Spectral Expansion and Plancherel Theorem |
|
|
52 | (1) |
|
1.15 Exotic Eigenfunctions, Discreteness of Pseudo-Cuspforms |
|
|
53 | (2) |
|
2 The Quotient Z+GL2(k)\GL2(A) |
|
|
55 | (83) |
|
2.1 Groups Kυ = GL2(oυ) ⊂ Gυ = GL2(kυ) |
|
|
56 | (3) |
|
2.2 Discrete Subgroup GL2(k) ⊂ GL2(A), Reduction Theory |
|
|
59 | (8) |
|
|
67 | (3) |
|
2.4 Hecke Operators, Integral Operators |
|
|
70 | (4) |
|
2.5 Decomposition by Central Characters |
|
|
74 | (2) |
|
2.6 Discrete Decomposition of Cuspforms |
|
|
76 | (3) |
|
2.7 Pseudo-Eisenstein Series |
|
|
79 | (6) |
|
|
85 | (11) |
|
2.9 Meromorphic Continuation of Eisenstein Series |
|
|
96 | (4) |
|
2.10 Truncation and Maaß-Selberg Relations |
|
|
100 | (5) |
|
2.11 Decomposition of Pseudo-Eisenstein Series: Level One |
|
|
105 | (9) |
|
2.12 Decomposition of Pseudo-Eisenstein Series: Higher Level |
|
|
114 | (5) |
|
2.13 Plancherel for Pseudo-Eisenstein Series: Level One |
|
|
119 | (5) |
|
2.14 Spectral Expansion, Plancherel Theorem: Level One |
|
|
124 | (1) |
|
2.15 Exotic Eigenfunctions, Discreteness of Pseudo-Cuspforms |
|
|
125 | (13) |
|
2.A Appendix: Compactness of J1/kx |
|
|
127 | (1) |
|
2.B Appendix: Meromorphic Continuation |
|
|
128 | (6) |
|
2.C Appendix: Hecke-Maaß Periods of Eisenstein Series |
|
|
134 | (4) |
|
3 SL3(Z), SL4(Z), SL5(Z), ... |
|
|
138 | (86) |
|
3.1 Parabolic Subgroups of GLr |
|
|
139 | (3) |
|
3.2 Groups Kυ = GLr(φυ) ⊂ Gυ = GLr(kυ) |
|
|
142 | (3) |
|
3.3 Discrete Subgroup Gk = GLr(k), Reduction Theory |
|
|
145 | (3) |
|
3.4 Invariant Differential Operators and Integral Operators |
|
|
148 | (2) |
|
3.5 Hecke Operators and Integral Operators |
|
|
150 | (2) |
|
3.6 Decomposition by Central Characters |
|
|
152 | (1) |
|
3.7 Discrete Decomposition of Cuspforms |
|
|
152 | (3) |
|
3.8 Pseudo-Eisenstein Series |
|
|
155 | (3) |
|
3.9 Cuspidal-Data Pseudo-Eisenstein Series |
|
|
158 | (2) |
|
3.10 Minimal-Parabolic Eisenstein Series |
|
|
160 | (7) |
|
3.11 Cuspidal-Data Eisenstein Series |
|
|
167 | (14) |
|
3.12 Continuation of Minimal-Parabolic Eisenstein Series |
|
|
181 | (12) |
|
3.13 Continuation of Cuspidal-Data Eisenstein Series |
|
|
193 | (2) |
|
3.14 Truncation and Maaß-Selberg Relations |
|
|
195 | (9) |
|
3.15 Minimal-Parabolic Decomposition |
|
|
204 | (4) |
|
3.16 Cuspidal-Data Decomposition |
|
|
208 | (6) |
|
3.17 Plancherel for Pseudo-Eisenstein Series |
|
|
214 | (4) |
|
3.18 Automorphic Spectral Expansions |
|
|
218 | (6) |
|
3.A Appendix: Bochner's Lemma |
|
|
220 | (2) |
|
3.B Appendix: Phragmen-Lindelof Theorem |
|
|
222 | (2) |
|
4 Invariant Differential Operators |
|
|
224 | (29) |
|
4.1 Derivatives of Group Actions: Lie Algebras |
|
|
225 | (4) |
|
4.2 Laplacians and Casimir Operators |
|
|
229 | (3) |
|
4.3 Details about Universal Algebras |
|
|
232 | (3) |
|
|
235 | (1) |
|
4.5 Example Computation: SL2(R) and S |
|
|
236 | (3) |
|
4.6 Example Computation: SL2(C) |
|
|
239 | (3) |
|
4.7 Example Computation: Sp*1,1 |
|
|
242 | (2) |
|
4.8 Example Computation: SL2(H) |
|
|
244 | (9) |
|
|
246 | (4) |
|
4.B Appendix: Existence and Uniqueness |
|
|
250 | (3) |
|
5 Integration on Quotients |
|
|
253 | (10) |
|
5.1 Surjectivity of Averaging Maps |
|
|
254 | (2) |
|
5.2 Invariant Measures and Integrals on Quotients H\G |
|
|
256 | (7) |
|
5.A Appendix: Apocryphal Lemma X ~ G/Gx |
|
|
258 | (4) |
|
5.B Appendix: Topology on Quotients H\G or G/H |
|
|
262 | (1) |
|
6 Action of G on Function Spaces on G |
|
|
263 | (43) |
|
6.1 Action of G on L2(Γ\G) |
|
|
263 | (4) |
|
6.2 Action of G on C0c(Γ\G) |
|
|
267 | (3) |
|
6.3 Test Functions on Z+Gk\GA |
|
|
270 | (4) |
|
6.4 Action of GA on C∞c(Z+Gk\Gk) |
|
|
274 | (3) |
|
6.5 Symmetry of Invariant Laplacians |
|
|
277 | (2) |
|
6.6 An Instance of Schur's Lemma |
|
|
279 | (6) |
|
6.7 Duality of Induced Representations |
|
|
285 | (4) |
|
6.8 An Instance of Frobenius Reciprocity |
|
|
289 | (1) |
|
|
290 | (5) |
|
6.10 Representations of Compact G/Z |
|
|
295 | (1) |
|
6.11 Gelfand-Kazhdan Criterion |
|
|
296 | (10) |
|
6.A Appendix: Action of Compact Abelian Groups |
|
|
301 | (5) |
|
7 Discrete Decomposition of Cuspforms |
|
|
306 | (48) |
|
7.1 The Four Simplest Examples |
|
|
307 | (13) |
|
|
320 | (13) |
|
|
333 | (21) |
|
|
345 | (6) |
|
7.B Appendix: Compact Quotients Γ\G |
|
|
351 | (3) |
|
8 Moderate Growth Functions, Theory of the Constant Term |
|
|
354 | (19) |
|
8.1 The Four Small Examples |
|
|
354 | (6) |
|
|
360 | (2) |
|
8.3 SL3(Z), SU(Z), SL5(Z), ... |
|
|
362 | (5) |
|
8.4 Moderate Growth of Convergent Eisenstein Series |
|
|
367 | (4) |
|
8.5 Integral Operators on Cuspidal-Data Eisenstein Series |
|
|
371 | (2) |
|
8.A Appendix: Joint Continuity of Bilinear Functionals |
|
|
372 | (1) |
Bibliography |
|
373 | (8) |
Index |
|
381 | |