Atnaujinkite slapukų nuostatas

El. knyga: Modern Differential Geometry For Physicists (2nd Edition)

(Imperial College, Uk)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This edition of the invaluable text Modern Differential Geometry for Physicists contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made.These lecture notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course Quantum Fields and Fundamental Forces at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory.The volume is divided into four parts: (i) introduction to general topology; (ii) introductory coordinate-free differential geometry; (iii) geometrical aspects of the theory of Lie groups and Lie group actions on manifolds; (iv) introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of tangent space structure, which he develops from several different points of view some geometrical, others more algebraic. This is done with awareness of the difficulty which physics graduate students often experience when being exposed for the first time to the rather abstract ideas of differential geometry.
An Introduction to Topology
1(58)
Preliminary Remarks
1(2)
Remarks on differential geometry
1(1)
Remarks on topology
2(1)
Metric Spaces
3(11)
The simple idea of convergence
3(2)
The idea of a metric space
5(3)
Examples of metric spaces
8(2)
Operations on metrics
10(1)
Some topological concepts in metric spaces
11(3)
Partially Ordered Sets and Lattices
14(9)
Partially ordered sets
14(4)
Lattices
18(5)
General Topology
23(36)
An example of non-metric convergence
23(2)
The idea of a neighbourhood space
25(7)
Topological spaces
32(5)
Some examples of topologies on a finite set
37(3)
A topology as a lattice
40(2)
The lattice of topologies T(X) on a set X
42(3)
Some properties of convergence in a general topological space
45(1)
The idea of a compact space
46(2)
Maps between topological spaces
48(3)
The idea of a homeomorphism
51(1)
Separation axioms
52(2)
Frames and locales
54(5)
Differentiable Manifolds
59(38)
Preliminary Remarks
59(1)
The Main Definitions
60(10)
Coordinate charts
60(4)
Some examples of differentiable manifolds
64(4)
Differentiable maps
68(2)
Tangent Spaces
70(27)
The intuitive idea
70(2)
A tangent vector as an equivalence class of curves
72(4)
The vector space structure on TpM.
76(1)
The push-forward of an equivalence class of curves
77(2)
Tangent vectors as derivations
79(11)
The tangent space TvV of a vector space V
90(1)
A simple example of the push-forward operation
91(1)
The tangent space of a product manifold
92(5)
Vector Fields and n-Forms
97(52)
Vector Fields
97(10)
The main definition
97(5)
The vector field commutator
102(2)
h-related vector fields
104(3)
Integral Curves and Flows
107(14)
Complete vector fields
107(4)
One-parameter groups of diffeomorphisms
111(4)
Local flows
115(2)
Some concrete examples of integral curves and flows
117(4)
Cotangent Vectors
121(11)
The algebraic dual of a vector space
121(2)
The main definitions
123(3)
The pull-back of a one-form
126(3)
A simple example of the pull-back operation
129(1)
The Lie derivative
130(2)
General Tensors and n-Forms
132(8)
The tensor product operation
132(3)
The idea of an n-form
135(2)
The definition of the exterior derivative
137(1)
The local nature of the exterior derivative
138(2)
DeRham Cohomology
140(9)
Lie Groups
149(50)
The Basic Ideas
149(8)
The first definitions
149(6)
The orthogonal group
155(2)
The Lie Algebra of a Lie Group
157(13)
Left-invariant vector fields
157(5)
The completeness of a left-invariant vector field
162(3)
The exponential map
165(4)
The Lie algebra of GL(n, R)
169(1)
Left-Invariant Forms
170(5)
The basic definitions
170(2)
The Cartan-Maurer form
172(3)
Transformation Groups
175(15)
The basic definitions
175(4)
Different types of group action
179(4)
The main theorem for transitive group actions
183(2)
Some important transitive actions
185(5)
Infinitesimal Transformations
190(9)
The induced vector field
190(5)
The main result
195(4)
Fibre Bundles
199(54)
Bundles in General
199(21)
Introduction
199(2)
The definition of a bundle
201(6)
The idea of a cross-section
207(3)
Covering spaces and sheaves
210(3)
The definition of a sub-bundle
213(1)
Maps between bundles
214(2)
The pull-back operation
216(2)
Universal bundles
218(2)
Principal Fibre Bundles
220(12)
The main definition
220(4)
Principal bundle maps
224(6)
Cross-sections of a principal bundle
230(2)
Associated Bundles
232(16)
The main definition
232(4)
Associated bundle maps
236(4)
Restricting and extending the structure group
240(3)
Riemannian metrics as reductions of B(M)
243(3)
Cross-sections as functions on the principle bundle
246(2)
Vector Bundles
248(5)
The main definitions
248(1)
Vector bundles as associated bundles
249(4)
Connections in a Bundle
253(24)
Connections in a Principal Bundle
253(9)
The definition of a connection
253(3)
Local representatives of a connection
256(2)
Local gauge transformations
258(3)
Connections in the frame bundle
261(1)
Parallel Transport
262(15)
Parallel transport in a principal bundle
262(5)
Parallel transport in an associated bundle
267(2)
Covariant differentiation
269(2)
The curvature two-form
271(6)
Bibliography 277(4)
Index 281