Foreword |
|
vii | |
Preface |
|
xi | |
Acknowledgments |
|
xv | |
Useful Notations |
|
xxv | |
Mathematical and Statistical Foundations |
|
1 | (68) |
|
1 Distributions Commonly Used in Credit and Counterparty Risk Modeling |
|
|
3 | (22) |
|
1.1 Common Distributions Families |
|
|
3 | (1) |
|
1.2 Discrete Distributions |
|
|
3 | (7) |
|
1.2.1 Bernoulli Distribution |
|
|
4 | (1) |
|
1.2.2 Binomial Distribution |
|
|
5 | (1) |
|
1.2.3 Geometric Distribution |
|
|
6 | (2) |
|
1.2.4 Negative Binomial Distribution |
|
|
8 | (1) |
|
1.2.5 Poisson Distribution |
|
|
9 | (1) |
|
1.3 Continuous Distributions |
|
|
10 | (7) |
|
1.3.1 Uniform Distribution |
|
|
11 | (1) |
|
1.3.2 Normal Distribution |
|
|
12 | (1) |
|
1.3.3 Log-Normal Distribution |
|
|
13 | (1) |
|
1.3.4 Exponential Distribution |
|
|
14 | (1) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.5 Multivariate Distributions |
|
|
18 | (7) |
|
1.5.1 Multivariate Gaussian Distribution |
|
|
21 | (4) |
|
|
25 | (10) |
|
2.1 Homogeneous Poisson Process |
|
|
25 | (6) |
|
2.2 Time-Varying Intensity Model |
|
|
31 | (1) |
|
2.3 Inhomogeneous Poisson Process |
|
|
32 | (3) |
|
|
35 | (34) |
|
3.1 Estimator Finite Sample Properties |
|
|
35 | (3) |
|
3.1.1 Estimator Selection Criteria |
|
|
35 | (2) |
|
3.1.2 Cramer-Rao Inequality |
|
|
37 | (1) |
|
3.2 Probability Generating Functions (PGF) |
|
|
38 | (2) |
|
|
39 | (1) |
|
|
40 | (2) |
|
3.3.1 Integral Evaluation |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
3.4.1 Antithetic Variates |
|
|
42 | (1) |
|
|
43 | (16) |
|
|
43 | (3) |
|
|
46 | (2) |
|
|
48 | (2) |
|
|
50 | (4) |
|
|
54 | (5) |
|
|
59 | (12) |
|
|
61 | (5) |
|
3.6.2 Dependence Measurement with Copulas |
|
|
66 | (1) |
|
|
67 | (2) |
Finance Background and Regulatory Framework |
|
69 | (54) |
|
|
71 | (8) |
|
|
71 | (1) |
|
|
72 | (3) |
|
4.2.1 Loan Loss Provision (LLP) |
|
|
72 | (1) |
|
4.2.2 Coverage Ratio (CovR) |
|
|
73 | (1) |
|
|
73 | (1) |
|
4.2.4 Non-Performing Loans (NPL) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (3) |
|
5 Banking Regulation Before the Crisis |
|
|
79 | (12) |
|
5.1 Basel Committee and Basel I |
|
|
79 | (1) |
|
|
80 | (11) |
|
5.2.1 Standardized Approach (ST) |
|
|
82 | (1) |
|
5.2.2 Internal Ratings-Based (IRB) Approach |
|
|
82 | (9) |
|
6 The Financial Crisis of the XXI-st Century |
|
|
91 | (12) |
|
|
91 | (1) |
|
|
91 | (4) |
|
6.3 Complexity Tree of Securitizations |
|
|
95 | (3) |
|
6.4 Lehman Brothers Collapse and the Change in Deposit Insurance |
|
|
98 | (1) |
|
6.5 Wider Macroeconomic Implications of the Great Recession |
|
|
99 | (4) |
|
7 Credit Risk Regulation After the Crisis |
|
|
103 | (20) |
|
7.1 From Basel II to Basel III |
|
|
103 | (3) |
|
7.1.1 Basel III Credit Risk Amendments |
|
|
104 | (2) |
|
7.2 Basel III Liquidity Ratios |
|
|
106 | (4) |
|
7.2.1 Liquidity Coverage Ratio (LCR) |
|
|
107 | (1) |
|
7.2.2 Net Stable Funding Ratio (NSFR) |
|
|
107 | (3) |
|
7.3 Basel III Capital Definition |
|
|
110 | (9) |
|
7.3.1 Additional Capital Instruments |
|
|
110 | (4) |
|
7.3.2 Capital Conservation Buffer |
|
|
114 | (1) |
|
7.3.3 Countercyclical Buffer |
|
|
115 | (1) |
|
7.3.4 Systemically Important Financial Institutions (SIFI) Buffer |
|
|
115 | (1) |
|
7.3.5 Minimum Capital Ratio Level |
|
|
116 | (2) |
|
7.3.6 Capital Ratio for Islamic Banks |
|
|
118 | (1) |
|
7.4 Basel III Leverage Ratio |
|
|
119 | (1) |
|
7.5 Remuneration Regulation |
|
|
120 | (3) |
Credit Risk Modeling Essentials |
|
123 | (64) |
|
8 Probability of Default (PD) |
|
|
125 | (22) |
|
|
125 | (1) |
|
|
126 | (3) |
|
8.2.1 Rating System Concept |
|
|
127 | (1) |
|
|
128 | (1) |
|
8.3 PD Estimation Methods |
|
|
129 | (7) |
|
8.3.1 Probit and Logit Models |
|
|
131 | (4) |
|
|
135 | (1) |
|
8.3.3 Bernoulli Distribution and Binomial Process |
|
|
136 | (1) |
|
8.4 Time Scaled Default Probabilities |
|
|
136 | (3) |
|
8.5 Time Scaled Rating Transitions |
|
|
139 | (4) |
|
|
143 | (1) |
|
8.7 Additional Thoughts on PD |
|
|
143 | (4) |
|
9 Loss Given Default (LGD) |
|
|
147 | (10) |
|
|
147 | (1) |
|
9.2 Recovery Rating Scale |
|
|
148 | (1) |
|
9.3 LGD Modeling Approaches |
|
|
148 | (2) |
|
|
150 | (3) |
|
9.5 Additional Thoughts on LGD |
|
|
153 | (4) |
|
10 Other Credit Risk Components and Portfolio Risk |
|
|
157 | (14) |
|
10.1 Exposure at Default (EAD) |
|
|
157 | (4) |
|
|
159 | (1) |
|
10.1.2 CCF Estimation Models |
|
|
159 | (2) |
|
|
161 | (1) |
|
10.3 Expected and Unexpected Losses |
|
|
162 | (4) |
|
|
166 | (2) |
|
|
168 | (3) |
|
11 Model Validation and Audit |
|
|
171 | (16) |
|
11.1 Validating Credit Risk Parameters |
|
|
171 | (10) |
|
11.1.1 Discriminatory Power |
|
|
171 | (5) |
|
11.1.2 Accuracy (Calibration) |
|
|
176 | (2) |
|
|
178 | (3) |
|
11.2 Back-Testing Gross Risk |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
Counterparty Risk Modeling |
|
187 | (38) |
|
|
189 | (18) |
|
12.1 Counterparty Credit Risk for OTC Instruments |
|
|
189 | (3) |
|
12.2 Current Exposure Method (CEM) |
|
|
192 | (2) |
|
12.3 Exposure at Contract Level |
|
|
194 | (1) |
|
12.4 Exposure at Counterparty Level |
|
|
195 | (1) |
|
12.5 Exposure with Collateral Payments |
|
|
196 | (1) |
|
12.6 Potential Future Exposure (PFE) |
|
|
197 | (1) |
|
12.7 Regulatory Methodology |
|
|
197 | (2) |
|
12.8 From the Add-on Factors to the Parametric Approach |
|
|
199 | (4) |
|
12.9 Parametric Potential Future Exposure |
|
|
203 | (4) |
|
|
207 | (12) |
|
|
207 | (1) |
|
13.2 Discounted Contractual Cash Flow (DCCF) |
|
|
207 | (2) |
|
13.3 Risk-Neutral Valuation (RNV) |
|
|
209 | (1) |
|
|
209 | (2) |
|
|
211 | (2) |
|
|
213 | (1) |
|
13.7 Central Counterparty (CCP) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
13.10 Potential Collateral Requirements |
|
|
215 | (4) |
|
14 Correlation-Driven Issues |
|
|
219 | (6) |
|
14.1 Correlation in the Future Exposure |
|
|
219 | (2) |
|
14.2 Correlation in Credit Loss and Unexpected Loss |
|
|
221 | (2) |
|
14.3 Correlation between Netting Groups |
|
|
223 | (1) |
|
14.4 Cross-Correlations between Different Types of Credit Events |
|
|
223 | (2) |
Portfolio Credit Risk Management Applications |
|
225 | (78) |
|
|
227 | (14) |
|
|
228 | (3) |
|
15.1.1 Mixed Poisson Model |
|
|
228 | (2) |
|
15.1.2 Homogeneous Portfolio |
|
|
230 | (1) |
|
|
231 | (10) |
|
15.2.1 Distribution of Defaults with Constant PD |
|
|
232 | (4) |
|
15.2.2 Portfolio Loss Distribution with Constant PD |
|
|
236 | (5) |
|
|
241 | (12) |
|
16.1 Distribution of Defaults with Random PD |
|
|
241 | (3) |
|
16.2 Portfolio Loss Distribution with Random PD |
|
|
244 | (5) |
|
16.3 Multifactor Analysis over Several Sectors |
|
|
249 | (2) |
|
16.4 Advantages and Limitations of CreditRisk + |
|
|
251 | (2) |
|
17 Estimating PD and LGD for Modeling Non-Performing Loans: The Case of Italy |
|
|
253 | (16) |
|
|
253 | (1) |
|
17.2 Materials and Methods |
|
|
254 | (1) |
|
17.2.1 Non-Performing Exposure and Regulation |
|
|
254 | (1) |
|
17.2.2 Asymptotic Methods and Data Separation |
|
|
254 | (1) |
|
17.3 Experimental Results on a Portfolio of Italian Companies |
|
|
255 | (10) |
|
17.3.1 Results for the PD |
|
|
255 | (5) |
|
17.3.2 Results for the LGD |
|
|
260 | (5) |
|
|
265 | (4) |
|
|
269 | (10) |
|
18.1 Correlated Bernoulli Baseline Model |
|
|
269 | (1) |
|
18.2 Computation of Correlation Matrix through the Copula |
|
|
270 | (3) |
|
18.3 Portfolio Risk Evaluation |
|
|
273 | (6) |
|
18.3.1 Description of the Input Bond Return Data |
|
|
273 | (2) |
|
18.3.2 Risk Evaluation of Credit Migration |
|
|
275 | (1) |
|
18.3.3 Portfolio Risk Evaluation: Selecting the Copulas |
|
|
275 | (4) |
|
19 Credit Default Swap (CDS) |
|
|
279 | (24) |
|
19.1 CDS Terms and Definitions |
|
|
280 | (2) |
|
|
282 | (2) |
|
|
284 | (8) |
|
19.3.1 Poisson Process for Modeling CDS |
|
|
285 | (1) |
|
|
286 | (5) |
|
19.3.3 Constant Hazard Rate Model |
|
|
291 | (1) |
|
|
292 | (13) |
|
19.4.1 Linear Interpolation |
|
|
293 | (1) |
|
19.4.2 Bootstrap Algorithm |
|
|
294 | (3) |
|
19.4.3 Example of Survival Curve Calibration |
|
|
297 | (6) |
Systemic Risk Implications |
|
303 | (24) |
|
20 . Diversifying the Economy for Systemic Risk Reduction: The Case of the Kingdom of Saudi Arabia (KSA) |
|
|
305 | (12) |
|
|
305 | (2) |
|
20.2 Quantitative Analysis and the Exposure to Oil |
|
|
307 | (8) |
|
|
307 | (1) |
|
|
307 | (3) |
|
|
310 | (1) |
|
20.2.4 Econometric Analysis |
|
|
311 | (2) |
|
|
313 | (2) |
|
|
315 | (2) |
|
21 Systemic Risk Regulation |
|
|
317 | (12) |
|
21.1 Systemic Risk Concept |
|
|
317 | (1) |
|
21.2 Current Systemic Risk Regulation |
|
|
318 | (1) |
|
21.3 Systemic Risk Regulation Options |
|
|
319 | (1) |
|
21.4 Systemic Risk as a Public Bad |
|
|
320 | (2) |
|
21.4.1 Natural Monopoly Regulation |
|
|
321 | (1) |
|
21.4.2 Conceptual Regulatory Framework |
|
|
321 | (1) |
|
|
322 | (3) |
|
|
325 | (6) |
|
21.6.1 Internal Ratings-Based (IRB) |
|
|
325 | (1) |
|
21.6.2 Globally Systemically Important Insurers (G-SIIs) |
|
|
326 | (1) |
Concluding Remarks |
|
327 | (2) |
Appendices |
|
329 | (52) |
|
Appendix A Financial Engineering: Coding in R |
|
|
331 | (30) |
|
|
331 | (7) |
|
|
331 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
338 | (23) |
|
A.2.1 R Code for Section 18.3.2 |
|
|
338 | (5) |
|
A.2.2 R Code for Section 18.3.3 |
|
|
343 | (18) |
|
Appendix B Financial Engineering: Coding in Matlab |
|
|
361 | (20) |
|
B.1 Asymptotic Single Risk Factor (ASRF) Model |
|
|
361 | (1) |
|
B.1.1 Matlab Code for the ASRF Model in Chapter 5 |
|
|
361 | (1) |
|
B.2 Matlab Code for Chapter 15 |
|
|
362 | (4) |
|
|
362 | (2) |
|
|
364 | (2) |
|
B.3 Matlab Code for Chapter 16 |
|
|
366 | (5) |
|
|
366 | (3) |
|
|
369 | (2) |
|
B.4 Matlab Code for Chapter 18 |
|
|
371 | (2) |
|
|
371 | (2) |
|
B.5 Matlab Code for Chapter 19 |
|
|
373 | (8) |
|
|
373 | (4) |
|
|
377 | (4) |
Appendix C Dataset Used for Modeling Non-Performing Loans |
|
381 | (4) |
Bibliography |
|
385 | (14) |
Index |
|
399 | (8) |
About the Authors |
|
407 | |