Atnaujinkite slapukų nuostatas

El. knyga: Modern Nuclear Chemistry

  • Formatas: EPUB+DRM
  • Išleidimo metai: 05-Apr-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119328483
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 05-Apr-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119328483
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Written by established experts in the field, this book features in-depth discussions of proven scientific principles, current trends, and applications of nuclear chemistry to the sciences and engineering.

•    Provides up-to-date coverage of the latest research and examines the theoretical and practical aspects of nuclear and radiochemistry
•    Presents the basic physical principles of nuclear and radiochemistry in a succinct fashion, requiring no basic knowledge of quantum mechanics
•    Adds math tools and simulations to demonstrate various phenomena, new chapters on Nuclear Medicine, Nuclear Forensics and Particle Physics, and updates to all other chapters
•    Includes additional solved problems to help students and a solutions manual for all end of chapter problems for instructors
•    Reviews of 1st edition: "... an authoritative, comprehensive but succinct, state-of-the-art textbook ...." (The Chemical Educator) and "...an excellent resource for libraries and laboratories supporting programs requiring familiarity with nuclear processes ..." (CHOICE)
Preface to the Second Edition xv
Preface to the First Edition xvii
1 Introductory Concepts 1(24)
1.1 Introduction
1(1)
1.2 The Excitement and Relevance of Nuclear Chemistry
2(1)
1.3 The Atom
3(1)
1.4 Atomic Processes
4(3)
1.4.1 Ionization
5(1)
1.4.2 X-Ray Emission
5(2)
1.5 The Nucleus: Nomenclature
7(1)
1.6 Properties of the Nucleus
8(1)
1.7 Survey of Nuclear Decay Types
9(3)
1.8 Modern Physical Concepts Needed in Nuclear Chemistry
12(7)
1.8.1 Elementary Mechanics
13(1)
1.8.2 Relativistic Mechanics
14(2)
1.8.3 de Broglie Wavelength: Wave-Particle Duality
16(2)
1.8.4 Heisenberg Uncertainty Principle
18(1)
1.8.5 Units and Conversion Factors
19(1)
Problems
19(2)
Bibliography
21(4)
2 Nuclear Properties 25(32)
2.1 Nuclear Masses
25(3)
2.2 Terminology
28(1)
2.3 Binding Energy Per Nucleon
29(2)
2.4 Separation Energy Systematics
31(1)
2.5 Abundance Systematics
32(1)
2.6 Semiempirical Mass Equation
33(6)
2.7 Nuclear Sizes and Shapes
39(4)
2.8 Quantum Mechanical Properties
43(2)
2.8.1 Nuclear Angular Momentum
43(2)
2.9 Electric and Magnetic Moments
45(6)
2.9.1 Magnetic Dipole Moment
45(3)
2.9.2 Electric Quadrupole Moment
48(3)
Problems
51(4)
Bibliography
55(2)
3 Radioactive Decay Kinetics 57(36)
3.1 Basic Decay Equations
57(8)
3.2 Mixture of Two Independently Decaying Radionuclides
65(1)
3.3 Radioactive Decay Equilibrium
66(10)
3.4 Branching Decay
76(1)
3.5 Radiation Dosage
77(2)
3.6 Natural Radioactivity
79(5)
3.6.1 General Information
79(1)
3.6.2 Primordial Nuclei and the Uranium Decay Series
79(2)
3.6.3 Cosmogenic Nuclei
81(2)
3.6.4 Anthropogenic Nuclei
83(1)
3.6.5 Health Effects of Natural Radiation
83(1)
3.7 Radionuclide Dating
84(6)
Problems
90(2)
Bibliography
92(1)
4 Nuclear Medicine 93(20)
4.1 Introduction
93(1)
4.2 Radiopharmaceuticals
94(2)
4.3 Imaging
96(2)
4.4 99Tcm
98(3)
4.5 PET
101(2)
4.6 Other Imaging Techniques
103(1)
4.7 Some Random Observations about the Physics of Imaging
104(4)
4.8 Therapy
108(2)
Problems
110(2)
Bibliography
112(1)
5 Particle Physics and the Nuclear Force 113(12)
5.1 Particle Physics
113(4)
5.2 The Nuclear Force
117(2)
5.3 Characteristics of the Strong Force
119(1)
5.4 Charge Independence of Nuclear Forces
120(4)
Problems
124(1)
Bibliography
124(1)
6 Nuclear Structure 125(42)
6.1 Introduction
125(2)
6.2 Nuclear Potentials
127(2)
6.3 Schematic Shell Model
129(12)
6.4 Independent Particle Model
141(2)
6.5 Collective Model
143(6)
6.6 Nilsson Model
149(3)
6.7 Fermi Gas Model
152(9)
Problems
161(3)
Bibliography
164(3)
7 alpha-Decay 167(24)
7.1 Introduction
167(2)
7.2 Energetics of a Decay
169(4)
7.3 Theory of a Decay
173(9)
7.4 Hindrance Factors
182(1)
7.5 Heavy Particle Radioactivity
183(2)
7.6 Proton Radioactivity
185(1)
Problems
186(2)
Bibliography
188(3)
8 beta-Decay 191(26)
8.1 Introduction
191(1)
8.2 Neutrino Hypothesis
192(4)
8.3 Derivation of the Spectral Shape
196(3)
8.4 Kurie Plots
199(1)
8.5 beta Decay Rate Constant
200(6)
8.6 Electron Capture Decay
206(1)
8.7 Parity Nonconservation
207(1)
8.8 Neutrinos Again
208(1)
8.9 beta-Delayed Radioactivities
209(2)
8.10 Double beta Decay
211(2)
Problems
213(1)
Bibliography
214(3)
9 gamma-Ray Decay 217(30)
9.1 Introduction
217(1)
9.2 Energetics of gamma-Ray Decay
218(2)
9.3 Classification of Decay Types
220(3)
9.4 Electromagnetic Transition Rates
223(6)
9.5 Internal Conversion
229(3)
9.6 Angular Correlations
232(6)
9.7 Mossbauer Effect
238(6)
Problems
244(1)
Bibliography
245(2)
10 Nuclear Reactions 247(58)
10.1 Introduction
247(1)
10.2 Energetics of Nuclear Reactions
248(4)
10.3 Reaction Types and Mechanisms
252(1)
10.4 Nuclear Reaction Cross Sections
253(11)
10.5 Reaction Observables
264(1)
10.6 Rutherford Scattering
264(4)
10.7 Elastic (Diffractive) Scattering
268(2)
10.8 Aside on the Optical Model
270(1)
10.9 Direct Reactions
271(2)
10.10 Compound Nuclear Reactions'
273(6)
10.11 Photonuclear Reactions
279(2)
10.12 Heavy-Ion Reactions
281(10)
10.12.1 Coulomb Excitation
284(1)
10.12.2 Elastic Scattering
284(1)
10.12.3 Fusion Reactions
284(4)
10.12.4 Incomplete Fusion
288(1)
10.12.5 Deep-Inelastic Scattering
289(2)
10.13 High-Energy Nuclear Reactions
291(7)
10.13.1 Spallation/Fragmentation Reactions
291(4)
10.13.2 Reactions Induced by Radioactive Projectiles
295(1)
10.13.3 Multifragmentation
296(2)
10.13.4 Quark-Gluon Plasma
298(1)
Problems
298(4)
Bibliography
302(3)
11 Fission 305(34)
11.1 Introduction
305(3)
11.2 Probability of Fission
308(15)
11.2.1 Liquid Drop Model
308(2)
11.2.2 Shell Corrections
310(2)
11.2.3 Spontaneous Fission
312(3)
11.2.4 Spontaneously Fissioning Isomers
315(1)
11.2.5 The Transition Nucleus
316(7)
11.3 Dynamical Properties of Fission Fragments
323(4)
11.4 Fission Product Distributions
327(7)
11.4.1 Total Kinetic Energy (TKE) Release
327(1)
11.4.2 Fission Product Mass Distribution
327(3)
11.4.3 Fission Product Charge Distributions
330(4)
11.5 Excitation Energy of Fission Fragments
334(3)
Problems
337(1)
Bibliography
338(1)
12 Nuclear Astrophysics 339(40)
12.1 Introduction
339(1)
12.2 Elemental and Isotopic Abundances
340(3)
12.3 Primordial Nucleosynthesis
343(8)
12.3.1 Stellar Evolution
347(4)
12.4 Thermonuclear Reaction Rates
351(2)
12.5 Stellar Nucleosynthesis
353(13)
12.5.1 Introduction
353(1)
12.5.2 Hydrogen Burning
353(4)
12.5.3 Helium Burning
357(2)
12.5.4 Synthesis of Nuclei with A < 60
359(1)
12.5.5 Synthesis of Nuclei with A > 60
360(6)
12.6 Solar Neutrino Problem
366(7)
12.6.1 Introduction
366(1)
12.6.2 Expected Solar Neutrino Sources, Energies, and Fluxes
367(2)
12.6.3 Detection of Solar Neutrinos
369(2)
12.6.4 The Solar Neutrino Problem
371(1)
12.6.5 Solution to the Problem: Neutrino Oscillations
371(2)
12.7 Synthesis of Li, Be, and B
373(2)
Problems
375(1)
Bibliography
376(3)
13 Reactors and Accelerators 379(50)
13.1 Introduction
379(1)
13.2 Nuclear Reactors
380(12)
13.2.1 Neutron-Induced Reaction
380(3)
13.2.2 Neutron-Induced Fission
383(1)
13.2.3 Neutron Inventory
384(2)
13.2.4 Light Water Reactors
386(5)
13.2.5 The Oklo Phenomenon
391(1)
13.3 Neutron Sources
392(1)
13.4 Neutron Generators
392(1)
13.5 Accelerators
393(17)
13.5.1 Ion Sources
394(2)
13.5.2 Electrostatic Machines
396(4)
13.5.3 Linear Accelerators
400(3)
13.5.4 Cyclotrons, Synchrotrons, and Rings
403(7)
13.6 Charged-Particle Beam Transport and Analysis
410(5)
13.7 Radioactive Ion Beams
415(6)
13.8 Nuclear Weapons
421(4)
Problems
425(2)
Bibliography
427(2)
14 The Transuranium Elements 429(44)
14.1 Introduction
429(1)
14.2 Limits of Stability
429(5)
14.3 Element Synthesis
434(3)
14.4 History of Transuranium Element Discovery
437(12)
14.5 Superheavy Elements
449(4)
14.6 Chemistry of the Transuranium Elements
453(8)
14.7 Environmental Chemistry of the Transuranium Elements
461(7)
Problems
468(1)
Bibliography
469(4)
15 Nuclear Reactor Chemistry 473(36)
15.1 Introduction
473(2)
15.2 Fission Product Chemistry
475(3)
15.3 Radiochemistry of Uranium
478(2)
15.3.1 Uranium Isotopes
478(1)
15.3.2 Metallic Uranium
478(1)
15.3.3 Uranium Compounds
478(1)
15.3.4 Uranium Solution Chemistry
479(1)
15.4 The Nuclear Fuel Cycle: The Front End
480(8)
15.4.1 Mining and Milling
481(2)
15.4.2 Refining and Chemical Conversion
483(1)
15.4.3 Isotopic Enhancement
484(3)
15.4.4 Fuel Fabrication
487(1)
15.5 The Nuclear Fuel Cycle: The Back End
488(5)
15.5.1 Properties of Spent Fuel
488(2)
15.5.2 Fuel Reprocessing
490(3)
15.6 Radioactive Waste Disposal
493(11)
15.6.1 Classifications of Radioactive Waste
493(1)
15.6.2 Waste Amounts and Associated Hazards
494(2)
15.6.3 Storage and Disposal of Nuclear Waste
496(1)
15.6.4 Spent Nuclear Fuel
497(1)
15.6.5 HLW
498(1)
15.6.6 Transuranic Waste
499(1)
15.6.7 Low-Level Waste
499(1)
15.6.8 Mill Tailings
500(1)
15.6.9 Partitioning of Waste
500(1)
15.6.10 Transmutation of Waste
501(3)
15.7 Chemistry of Operating Reactors
504(2)
15.7.1 Radiation Chemistry of Coolants
504(1)
15.7.2 Corrosion
505(1)
15.7.3 Coolant Activities
505(1)
Problems
506(1)
Bibliography
507(2)
16 Interaction of Radiation with Matter 509(44)
16.1 Introduction
509(3)
16.2 Heavy Charged Particles
512(14)
16.2.1 Stopping Power
512(9)
16.2.2 Range
521(5)
16.3 Electrons
526(6)
16.4 Electromagnetic Radiation
532(8)
16.4.1 Photoelectric Effect
534(2)
16.4.2 Compton Scattering
536(1)
16.4.3 Pair Production
537(3)
16.5 Neutrons
540(4)
16.6 Radiation Exposure and Dosimetry
544(4)
Problems
548(2)
Bibliography
550(3)
17 Radiation Detectors 553(50)
17.1 Introduction
553(3)
17.1.1 Gas Ionization
554(1)
17.1.2 Ionization in a Solid (Semiconductor Detectors)
554(1)
17.1.3 Solid Scintillators
555(1)
17.1.4 Liquid Scintillators
555(1)
17.1.5 Nuclear Emulsions
555(1)
17.2 Detectors Based on Collecting Ionization
556(22)
17.2.1 Gas Ionization Detectors
557(10)
17.2.2 Semiconductor Detectors (Solid, State Ionization Chambers)
567(11)
17.3 Scintillation Detectors
578(6)
17.4 Nuclear Track Detectors
584(1)
17.5 Neutron Detectors
585(2)
17.6 Nuclear Electronics and Data Collection
587(2)
17.7 Nuclear Statistics
589(10)
17.7.1 Distributions of Data and Uncertainty
591(6)
17.7.2 Rejection of Abnormal Data
597(1)
17.7.3 Setting Upper Limits When No Counts Are Observed
598(1)
Problems
599(1)
Bibliography
600(3)
18 Nuclear Analytical Methods 603(22)
18.1 Introduction
603(1)
18.2 Activation Analysis
603(9)
18.2.1 Basic Description of the Method
603(2)
18.2.2 Advantages and Disadvantages of Activation Analysis
605(2)
18.2.3 Practical Considerations in Activation Analysis
607(4)
18.2.4 Applications of Activation Analysis
611(1)
18.3 PIXE
612(3)
18.4 Rutherford Backscattering
615(4)
18.5 Accelerator Mass Spectrometry (AMS)
619(1)
18.6 Other Mass Spectrometric Techniques
620(1)
Problems
621(2)
Bibliography
623(2)
19 Radiochemical Techniques 625(38)
19.1 Introduction
625(1)
19.2 Unique Aspects of Radiochemistry
626(4)
19.3 Availability of Radioactive Material
630(2)
19.4 Targetry
632(5)
19.5 Measuring Beam Intensity and Fluxes
637(2)
19.6 Recoils, Evaporation Residues, and Heavy Residues
639(5)
19.7 Radiochemical Separation Techniques
644(9)
19.7.1 Precipitation
644(1)
19.7.2 Solvent Extraction
645(3)
19.7.3 Ion Exchange
648(2)
19.7.4 Extraction Chromatography
650(2)
19.7.5 Rapid Radiochemical Separations
652(1)
19.8 Low-Level Measurement Techniques
653(6)
19.8.1 Blanks
654(1)
19.8.2 Low-Level Counting: General Principles
654(1)
19.8.3 Low-Level Counting: Details
655(3)
19.8.4 Limits of Detection
658(1)
Problems
659(1)
Bibliography
660(3)
20 Nuclear Forensics 663(20)
20.1 Introduction
663(7)
20.1.1 Basic Principles of Forensic Analysis
666(4)
20.2 Chronometry
670(2)
20.3 Nuclear Weapons and Their Debris
672(6)
20.3.1 RDD or Dirty Bombs
672(2)
20.3.2 Nuclear Explosions
674(4)
20.4 Deducing Sources and Routes of Transmission
678(2)
Problems
680(1)
Bibliography
681(2)
Appendix A: Fundamental Constants and Conversion Factors 683(4)
Appendix B: Nuclear Wallet Cards 687(24)
Appendix C: Periodic Table of the Elements 711(2)
Appendix D: Alphabetical List of the Elements 713(2)
Appendix E: Elements of Quantum Mechanics 715(22)
Index 737
WALTER D. LOVELAND, PhD, is a professor of chemistry at Oregon State University, USA.

DAVID J. MORRISSEY, PhD, is a professor of chemistry and associate director of the National Superconducting Cyclotron Laboratory at Michigan State University, USA.

GLENN T. SEABORG, PhD (deceased), was a professor of chemistry at the University of California, Berkeley, and cofounder and chairman of the Lawrence Hall of Science, USA. He is credited with discovering 10 new elements, including plutonium and one that now bears his name, seaborgium. In 1951, Dr. Seaborg and his colleague, Edwin McMillan, were awarded the Nobel Prize in Chemistry for research into transuranium elements.