Atnaujinkite slapukų nuostatas

El. knyga: Modern Optical Spectroscopy: With Exercises and Examples from Biophysics and Biochemistry

  • Formatas: PDF+DRM
  • Išleidimo metai: 09-Jun-2015
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662467770
  • Formatas: PDF+DRM
  • Išleidimo metai: 09-Jun-2015
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662467770

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook offers clear explanations of optical spectroscopic phenomena and shows how spectroscopic techniques are used in modern molecular and cellular biophysics and biochemistry. The topics covered include electronic and vibrational absorption, fluorescence, resonance energy transfer, exciton interactions, circular dichroism, coherence and dephasing, ultrafast pump-probe and photon-echo spectroscopy, single-molecule and fluorescence-correlation spectroscopy, Raman scattering, and multiphoton absorption. This revised and updated edition provides expanded discussions of quantum optics, metal-ligand charge-transfer transitions, entropy changes during photoexcitation, electron transfer from excited molecules, normal-mode calculations, vibrational Stark effects, studies of fast processes by resonance energy transfer in single molecules, and two-dimensional electronic and vibrational spectroscopy.

The explanations are sufficiently thorough and detailed to be useful for researchers and graduate students and advanced undergraduates in chemistry, biochemistry and biophysics. They are based on time-dependent quantum mechanics, but are developed from first principles with a clarity that makes them accessible to readers with little prior training in this field. Extra topics and highlights are featured in special boxes throughout the text. The author also provides helpful exercises for each chapter.

1 Introduction
1(30)
1.1 Overview
1(2)
1.2 The Beer-Lambert Law
3(1)
1.3 Regions of the Electromagnetic Spectrum
4(2)
1.4 Absorption Spectra of Proteins and Nucleic Acids
6(2)
1.5 Absorption Spectra of Mixtures
8(1)
1.6 The Photoelectric Effect
9(1)
1.7 Techniques for Measuring Absorbance
10(4)
1.8 Pump-probe and Photon-Echo Experiments
14(1)
1.9 Linear and Circular Dichroism
15(2)
1.10 Distortions of Absorption Spectra by Light Scattering or Nonuniform Distributions of the Absorbing Molecules
17(2)
1.11 Fluorescence
19(5)
1.12 IR and Raman Spectroscopy
24(1)
1.13 Lasers
25(1)
1.14 Nomenclature
26(5)
Exercises
27(1)
References
28(3)
2 Basic Concepts of Quantum Mechanics
31(50)
2.1 Wavefunctions, Operators and Expectation Values
31(7)
2.1.1 Wavefunctions
31(1)
2.1.2 Operators and Expectation Values
32(6)
2.2 The Time-Dependent and Time-Independent Schrodinger Equations
38(7)
2.2.1 Superposition States
44(1)
2.3 Spatial Wavefunctions
45(17)
2.3.1 A Free Particle
45(1)
2.3.2 A Particle in a Box
46(3)
2.3.3 The Harmonic Oscillator
49(3)
2.3.4 Atomic Orbitals
52(4)
2.3.5 Molecular Orbitals
56(4)
2.3.6 Wavefunctions for Large Systems
60(2)
2.4 Spin Wavefunctions and Singlet and Triplet States
62(8)
2.5 Transitions Between States: Time-Dependent Perturbation Theory
70(3)
2.6 Lifetimes of States and the Uncertainty Principle
73(8)
Exercises
76(1)
References
77(4)
3 Light
81(42)
3.1 Electromagnetic Fields
81(25)
3.1.1 Electrostatic Forces and Fields
81(1)
3.1.2 Electrostatic Potentials
82(3)
3.1.3 Electromagnetic Radiation
85(7)
3.1.4 Energy Density and Irradiance
92(7)
3.1.5 The Complex Electric Susceptibility and Refractive Index
99(5)
3.1.6 Local-Field Correction Factors
104(2)
3.2 The Black-Body Radiation Law
106(2)
3.3 Linear and Circular Polarization
108(2)
3.4 Quantum Theory of Electromagnetic Radiation
110(4)
3.5 Superposition States and Interference Effects in Quantum Optics
114(4)
3.6 Distribution of Frequencies in Short Pulses of Light
118(5)
Exercises
120(1)
References
121(2)
4 Electronic Absorption
123(102)
4.1 Interactions of Electrons with Oscillating Electric Fields
123(5)
4.2 The Rates of Absorption and Stimulated Emission
128(4)
4.3 Transition Dipoles and Dipole Strengths
132(9)
4.4 Calculating Transition Dipoles for π Molecular Orbitals
141(2)
4.5 Molecular Symmetry and Forbidden and Allowed Transitions
143(17)
4.6 Linear Dichroism
160(4)
4.7 Configuration Interactions
164(4)
4.8 Calculating Electric Transition Dipoles with the Gradient Operator
168(9)
4.9 Transition Dipoles for Excitations to Singlet and Triplet States
177(2)
4.10 The Born-Oppenheimer Approximation, Franck-Condon Factors, and the Shapes of Electronic Absorption Bands
179(9)
4.11 Spectroscopic Hole Burning
188(3)
4.12 Effects of the Surroundings on Molecular Transition Energies
191(8)
4.13 The Electronic Stark Effect
199(6)
4.14 Metal-Ligand and Ligand-Metal Charge-Transfer Transitions and Rydberg Transitions
205(3)
4.15 Thermodynamics of Photoexcitation
208(17)
Exercises
214(2)
References
216(9)
5 Fluorescence
225(72)
5.1 The Einstein Coefficients
225(3)
5.2 The Stokes Shift
228(2)
5.3 The Mirror-Image Law
230(3)
5.4 The Strickler-Berg Equation and Other Relationships Between Absorption and Fluorescence
233(6)
5.5 Quantum Theory of Absorption and Emission
239(6)
5.6 Fluorescence Yields and Lifetimes
245(11)
5.7 Fluorescent Probes and Tags
256(4)
5.8 Photobleaching
260(1)
5.9 Fluorescence Anisotropy
261(6)
5.10 Single-Molecule Fluorescence and High-Resolution Fluorescence Microscopy
267(5)
5.11 Fluorescence Correlation Spectroscopy
272(7)
5.12 Intersystem Crossing, Phosphorescence, and Delayed Fluorescence
279(18)
Exercises
282(1)
References
283(14)
6 Vibrational Absorption
297(28)
6.1 Vibrational Normal Modes and Wavefunctions
297(8)
6.2 Vibrational Excitation
305(7)
6.3 Infrared Spectroscopy of Proteins
312(3)
6.4 Vibrational Stark Effects
315(10)
Exercises
317(1)
References
318(7)
7 Resonance Energy Transfer
325(28)
7.1 Introduction
325(2)
7.2 The Forster Theory
327(15)
7.3 Using Energy Transfer to Study Fast Processes in Single Protein Molecules
342(2)
7.4 Exchange Coupling
344(2)
7.5 Energy Transfer to and from Carotenoids in Photosynthesis
346(7)
Exercises
348(2)
References
350(3)
8 Exciton Interactions
353(30)
8.1 Stationary States of Systems with Interacting Molecules
353(8)
8.2 Effects of Exciton Interactions on the Absorption Spectra of Oligomers
361(6)
8.3 Transition-Monopole Treatments of Interaction Matrix Elements and Mixing with Charge-Transfer Transitions
367(3)
8.4 Exciton Absorption Band Shapes and Dynamic Localization of Excitations
370(3)
8.5 Exciton States in Photosynthetic Antenna Complexes
373(3)
8.6 Excimers and Exciplexes
376(7)
Exercises
377(2)
References
379(4)
9 Circular Dichroism
383(34)
9.1 Magnetic Transition Dipoles and n-π* Transitions
383(11)
9.2 The Origin of Circular Dichroism
394(6)
9.3 Circular Dichroism of Dimers and Higher Oligomers
400(5)
9.4 Circular Dichroism of Proteins and Nucleic Acids
405(4)
9.5 Magnetic Circular Dichroism
409(8)
Exercises
412(2)
References
414(3)
10 Coherence and Dephasing
417(46)
10.1 Oscillations Between Quantum States of an Isolated System
417(4)
10.2 The Density Matrix
421(6)
10.3 The Stochastic Liouville Equation
427(2)
10.4 Effects of Stochastic Relaxations on the Dynamics of Quantum Transitions
429(6)
10.5 A Density-Matrix Treatment of Absorption of Weak, Continuous Light
435(3)
10.6 The Relaxation Matrix
438(10)
10.7 More General Relaxation Functions and Spectral Lineshapes
448(6)
10.8 Anomalous Fluorescence Anisotropy
454(9)
Exercises
460(1)
References
461(2)
11 Pump-Probe Spectroscopy, Photon Echoes and Vibrational Wavepackets
463(50)
11.1 First-Order Optical Polarization
463(9)
11.2 Third-Order Optical Polarization and Non-linear Response Functions
472(5)
11.3 Pump-Probe Spectroscopy
477(3)
11.4 Photon Echoes
480(7)
11.5 Two-Dimensional Electronic and Vibrational Spectroscopy
487(3)
11.6 Transient Gratings
490(3)
11.7 Vibrational Wavepackets
493(9)
11.8 Wavepacket Pictures of Spectroscopic Transitions
502(11)
Exercises
504(2)
References
506(7)
12 Raman Scattering and Other Multi-photon Processes
513(36)
12.1 Types of Light Scattering
513(4)
12.2 The Kramers-Heisenberg-Dirac Theory
517(9)
12.3 The Wavepacket Picture of Resonance Raman Scattering
526(2)
12.4 Selection Rules for Raman Scattering
528(3)
12.5 Surface-Enhanced Raman Scattering
531(1)
12.6 Biophysical Applications of Raman Spectroscopy
531(1)
12.7 Coherent (Stimulated) Raman Scattering
532(2)
12.8 Multi-photon Absorption
534(3)
12.9 Quasielastic (Dynamic) Light Scattering (Photon Correlation Spectroscopy)
537(12)
Exercises
541(1)
References
542(7)
Appendix A
549(12)
A.1 Vectors
549(2)
A.2 Matrices
551(2)
A.3 Fourier Transforms
553(4)
A.4 Phase Shift and Modulation Amplitude in Frequency-Domain Spectroscopy
557(3)
A.5 CGS and SI Units and Abbreviations
560(1)
References 561(2)
Index 563