Atnaujinkite slapukų nuostatas

El. knyga: Modern Solvers for Helmholtz Problems

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Geosystems Mathematics
  • Išleidimo metai: 02-Mar-2017
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319288321
  • Formatas: EPUB+DRM
  • Serija: Geosystems Mathematics
  • Išleidimo metai: 02-Mar-2017
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319288321

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts:new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications.The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequenci

es the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle.The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.

I Algorithms: new developments and analysis.- II Algorithms: practical methods and implementations.- III Industrial applications.
Part I Algorithms: New Developments and Analysis
Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption
3(24)
Ivan G. Graham
Euan A. Spence
Eero Vainikko
High Order Transparent Boundary Conditions for the Helmholtz Equation
27(26)
Lothar Nannen
On the Optimality of Shifted Laplacian in a Class of Polynomial Preconditioners for the Helmholtz Equation
53(32)
Siegfried Cools
Wim Vanroose
Part II Algorithms: Practical Methods and Implementations
How to Choose the Shift in the Shifted Laplace Preconditioner for the Helmholtz Equation Combined with Deflation
85(28)
D. Lahaye
C. Vuik
The Multilevel Krylov-Multigrid Method for the Helmholtz Equation Preconditioned by the Shifted Laplacian
113(28)
Yogi A. Erlangga
Luis Garcia Ramos
Reinhard Nabben
A Geometric Multigrid Preconditioner for the Solution of the Helmholtz Equation in Three-Dimensional Heterogeneous Media on Massively Parallel Computers
141(18)
H. Calandra
S. Gratton
X. Vasseur
Part III Implementations and Industrial Applications
Some Computational Aspects of the Time and Frequency Domain Formulations of Seismic Waveform Inversion
159(30)
Rene-Edouard Plessix
Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations
189(26)
X. Antoine
C. Geuzaine
Computationally Efficient Boundary Element Methods for High-Frequency Helmholtz Problems in Unbounded Domains
215
Timo Betcke
Elwin van't Wout
Pierre Gelat