Atnaujinkite slapukų nuostatas

Modular Forms and Galois Cohomology [Kietas viršelis]

(University of California, Los Angeles)
  • Formatas: Hardback, 356 pages, aukštis x plotis x storis: 236x158x28 mm, weight: 678 g, 2 Tables, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 29-Jun-2000
  • Leidėjas: Cambridge University Press
  • ISBN-10: 052177036X
  • ISBN-13: 9780521770361
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 356 pages, aukštis x plotis x storis: 236x158x28 mm, weight: 678 g, 2 Tables, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 29-Jun-2000
  • Leidėjas: Cambridge University Press
  • ISBN-10: 052177036X
  • ISBN-13: 9780521770361
Kitos knygos pagal šią temą:
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the TaylorWiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the TaylorWiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.

Daugiau informacijos

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.
Preface ix
Overview of Modular Forms
1(22)
Hecke Characters
7(7)
Hecke characters of finite order
7(2)
Arithmetic Hecke characters
9(2)
A theorem of Weil
11(3)
Introduction to Modular Forms
14(9)
Modular forms
14(5)
Abelian modular forms and abelian deformation
19(4)
Representations of a Group
23(40)
Group Representations
23(22)
Coefficient rings
23(1)
Topological and profinite groups
24(5)
Nakayama's lemma
29(2)
Semi-simple algebras
31(3)
Representations of finite groups
34(5)
Induced representations
39(3)
Representations with coefficients in Artinian rings
42(3)
Pseudo-representations
45(6)
Pseudo-representations of degree 2
45(3)
Higher degree pseudo-representations
48(3)
Deformation of Group Representations
51(12)
Abelian deformation
52(4)
Non-abelian deformation
56(3)
Tangent spaces of local rings
59(1)
Cohomological interpretation of tangent spaces
60(3)
Representations of Galois Groups and Modular Forms
63(91)
Modular Forms on Adele Groups of GL(2)
63(38)
Elliptic modular forms
63(2)
Structure theorems on GL(A)
65(4)
Maximal compact subgroups
69(2)
Open compact subgroups of GL2(A) and Dirichlet characters
71(3)
Adelic and classical modular forms
74(3)
Hecke algebras
77(7)
Fourier expansion
84(4)
Rationality of modular forms
88(8)
p-adic Hecke algebras
96(5)
Modular Galois Representations
101(53)
Hecke eigenforms
101(6)
Galois representation of Hecke eigenforms
107(5)
Galois representation with values in the Hecke algebra
112(5)
Universal deformation rings
117(4)
Local deformation ring
121(4)
Taylor--Wiles systems
125(10)
Taylor--Wiles system of Hecke algebras
135(4)
Tangential dimensions of deformation rings
139(15)
Cohomology Theory of Galois Groups
154(82)
Categories and Functors
154(8)
Categories
154(1)
Functors
155(1)
Representability
156(3)
Abelian categories
159(3)
Extension of Modules
162(17)
Extension groups
162(4)
Extension functors
166(4)
Cohomology groups of complexes
170(3)
Higher extension groups
173(6)
Group Cohomology Theory
179(27)
Cohomology of finite groups
180(5)
Tate cohomology groups
185(4)
Continuous cohomology for profinite groups
189(8)
Inflation and restriction sequences
197(5)
Applications to representation theory
202(4)
Duality in Galois Cohomology
206(30)
Class formation and duality of cohomology groups
206(8)
Global duality theorems
214(5)
Tate--Shafarevich groups
219(8)
Local Euler characteristic formula
227(4)
Global Euler characteristic formula
231(5)
Modular L-Values and Selmer Groups
236(94)
Selmer Groups
239(15)
Definition
239(5)
Motivic interpretation
244(8)
Character twists
252(2)
Adjoint Selmer Groups
254(13)
Adjoint Galois representations
254(5)
Universal deformation rings
259(3)
Kahler differentials
262(3)
Adjoint Selmer groups and differentials
265(2)
Arithmetic of Modular Adjoint L-Values
267(30)
Analyticity of adjoint L-functions
267(2)
Rationality of adjoint L-values
269(7)
Congruences and adjoint L-values
276(9)
Gorenstein and complete intersection rings
285(6)
Universal p-ordinary Hecke algebras
291(3)
p-adic adjoint L-functions
294(3)
Control of Universal Deformation Rings
297(10)
Deformation functors of group representations
297(5)
Nearly ordinary deformations
302(3)
Ordinary deformations
305(1)
Deformations with fixed determinant
306(1)
Base Change of Deformation Rings
307(3)
Various deformation rings
307(3)
Hilbert Modular Hecke Algebras
310(20)
Various Hecke algebras for GL(2)
310(6)
Automorphic base change
316(2)
An Iwasawa theory for Hecke algebras
318(5)
Adjoint Selmer groups over cyclotomic extensions
323(2)
Proof of Theorem 5.44
325(5)
Bibliography 330(7)
Subject Index 337(3)
List of Statements 340(2)
List of Symbols 342