Atnaujinkite slapukų nuostatas

Moduli Stacks of Étale (, )-Modules and the Existence of Crystalline Lifts: (AMS-215) [Kietas viršelis]

  • Formatas: Hardback, 312 pages, aukštis x plotis: 235x156 mm
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 13-Dec-2022
  • Leidėjas: Princeton University Press
  • ISBN-10: 0691241341
  • ISBN-13: 9780691241340
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 312 pages, aukštis x plotis: 235x156 mm
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 13-Dec-2022
  • Leidėjas: Princeton University Press
  • ISBN-10: 0691241341
  • ISBN-13: 9780691241340
Kitos knygos pagal šią temą:
A foundational account of a new construction in the p-adic Langlands correspondence

Motivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazurs formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize étale (, )-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the BreuilMézard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.

Recenzijos

"A foundational and seminal work."---Eran Assaf, MathSciNet

1 Introduction
1(18)
1.1 Motivation
1(1)
1.2 Our main theorems
2(2)
1.3 (φ, Γ)-modules with coefficients
4(1)
1.4 Families of extensions
5(1)
1.5 Crystalline lifts
6(3)
1.6 Crystalline and semistable moduli stacks
9(1)
1.7 The geometric Breuil--Mezard conjecture and the weight part of Serre's conjecture
10(2)
1.8 Further questions
12(1)
1.9 Previous work
13(1)
1.10 An outline of the book
14(1)
1.11 Acknowledgments
15(1)
1.12 Notation and conventions
16(3)
2 Rings and coefficients
19(37)
2.1 Rings
19(6)
2.2 Coefficients
25(10)
2.3 Almost Galois descent for profinite group actions
35(10)
2.4 An application of almost Galois descent
45(2)
2.5 Etale φ-modules
47(1)
2.6 Frobenius descent
48(4)
2.7 (φ, Γ)-modules
52(4)
3 Moduli stacks of φ-modules and (φ, Γ)-modules
56(29)
3.1 Moduli stacks of φ-modules
56(2)
3.2 Moduli stacks of (φ, Γ)-modules
58(8)
3.3 Weak Wach modules
66(3)
3.4 Xd is an Ind-algebraic stack
69(5)
3.5 Canonical actions and weak Wach modules
74(2)
3.6 The connection with Galois representations
76(4)
3.7 (φ, GK)-modules and restriction
80(4)
3.8 Tensor products and duality
84(1)
4 Crystalline and semistable moduli stacks
85(40)
4.1 Notation
85(1)
4.2 Breuil--Kisin modules and Breuil--Kisin--Fargues modules
85(3)
4.3 Canonical extensions of GK∞-actions
88(4)
4.4 Breuil--Kisin--Fargues GK-modules and canonical actions
92(1)
4.5 Stacks of semistable and crystalline Breuil--Kisin--Fargues modules
93(11)
4.6 Inertial types
104(2)
4.7 Hodge--Tate weights
106(9)
4.8 Moduli stacks of potentially semistable representations
115(10)
5 Families of extensions
125(41)
5.1 The Herr complex
125(16)
5.2 Residual gerbes and isotrivial families
141(1)
5.3 Twisting families
142(7)
5.4 Dimensions of families of extensions
149(8)
5.5 Xd is a formal algebraic stack
157(9)
6 Crystalline lifts and the finer structure of Xd,red
166(19)
6.1 The fiber dimension of H2 on crystalline deformation rings
166(2)
6.2 Two geometric lemmas
168(4)
6.3 Crystalline lifts
172(3)
6.4 Potentially diagonalizable crystalline lifts
175(3)
6.5 The irreducible components of Xd,red
178(2)
6.6 Closed points
180(2)
6.7 The substack of GK-representations
182(3)
7 The rank 1 case
185(26)
7.1 Preliminaries
185(6)
7.2 Moduli stacks in the rank 1 case
191(6)
7.3 A ramification bound
197(14)
8 A geometric Breuil--Mezard conjecture
211(14)
8.1 The qualitative geometric Breuil--Mezard conjecture
212(2)
8.2 Semistable and crystalline inertial types
214(1)
8.3 The relationship between the numerical, refined and geometric Breuil--Mezard conjectures
215(2)
8.4 The weight part of Serre's conjecture
217(1)
8.5 The case of GL2(QP)
218(1)
8.6 GL2(K): potentially Barsotti--Tate types
218(5)
8.7 Brief remarks on GLd, d > 2
223(2)
A Formal algebraic stacks 225(17)
B Graded modules and rigid analysis 242(15)
C Topological groups and modules 257(4)
D Tate modules and continuity 261(14)
E Points, residual gerbes, and isotrivial families 275(4)
F Breuil--Kisin--Fargues modules and potentially semistable representations (by Toby Gee and Tong Liu) 279(10)
Bibliography 289(8)
Index 297
Matthew Emerton is professor of mathematics at the University of Chicago. Toby Gee is professor of mathematics at Imperial College London.