Atnaujinkite slapukų nuostatas

El. knyga: Molecular Magnets: Physics and Applications

Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 17-Oct-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642406096
  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 17-Oct-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642406096

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides an overview of the physical phenomena discovered in magnetic molecular materials over the last 20 years. It is written by leading scientists having made the most important contributions to this active area of research. The main topics of this book are the principles of quantum tunneling and quantum coherence of single-molecule magnets (SMMs), phenomena which go beyond the physics of individual molecules, such as the collective behavior of arrays of SMMs, the physics of one-dimensional single–chain magnets and magnetism of SMMs grafted on substrates. The potential applications of these physical phenomena to classical and quantum information, communication technologies, and the emerging fields of molecular spintronics and magnetic refrigeration are stressed. The book is written for graduate students, researchers and non-experts in this field of research.

This book provides an overview of the physical phenomena discovered in magnetic molecular materials. It presents potential applications to classical and quantum information, communication technologies, molecular spintronics and magnetic refrigeration.
Part I Tunneling of Single Molecule Magnets
1 From Quantum Relaxation to Resonant Spin Tunneling
3(14)
Javier Tejada
1.1 Historic Notes
3(2)
1.2 Early Experiments on Magnetic Tunneling at the University of Barcelona
5(3)
1.3 Experiments on Mn-12
8(4)
1.4 Conclusion
12(5)
References
13(4)
2 Quantum Tunneling of the Collective Spins of Single-Molecule Magnets: From Early Studies to Quantum Coherence
17(44)
Bernard Barbara
2.1 Introduction
17(1)
2.2 Prehistory and History
18(6)
2.2.1 Micro-SQUID Measurements
22(1)
2.2.2 Mn12-ac, The First Single Molecular Magnet
22(2)
2.3 Quantum Tunneling in Single Molecule Magnets
24(9)
2.3.1 Single Molecule Magnets: Basic Properties
24(2)
2.3.2 First Evidences
26(2)
2.3.3 Main Evidences
28(5)
2.4 Theory and Comparisons with Experiments
33(11)
2.4.1 Resonance Conditions
33(1)
2.4.2 Quantum Fluctuations and Barrier Erasing
34(1)
2.4.3 Tunnel Splittings, Spin-Parity and Observation of MQTM
34(2)
2.4.4 Quantum Tunneling and Spin-Bath
36(8)
2.5 Quantum Tunneling and Coherence in Single Ion Magnets
44(6)
2.5.1 First Evidence of MQTM in SIMs and Comparison with SMMs
44(3)
2.5.2 First Evidence of MQCM in SIMs, Paving the Way for SMMs
47(3)
2.6 Quantum Coherence in Single Molecule Magnets
50(4)
2.7 Conclusion and Perspectives
54(7)
References
55(6)
3 Spin Tunneling in Magnetic Molecules That Have Full or Partial Mechanical Freedom
61(16)
Eugene M. Chudnovsky
3.1 Introduction
61(3)
3.2 Nanomechanics of a Two-State Spin System Rotating About a Fixed Axis
64(3)
3.2.1 Quantum Mechanics of a Two-State Spin System
64(1)
3.2.2 Renormalization of the Spin Tunnel Splitting in a Nano-oscillator
65(2)
3.3 Free Quantum Rotator with a Two-State Macrospin
67(7)
3.3.1 Anomalous Commutation Relations
67(3)
3.3.2 Rotating Two-State Spin System
70(2)
3.3.3 Ground State
72(2)
3.4 Conclusions
74(3)
References
75(2)
4 A Microscopic and Spectroscopic View of Quantum Tunneling of Magnetization
77(36)
Junjie Liu
Enrique del Barco
Stephen Hill
4.1 Spin Hamiltonian
77(6)
4.1.1 Giant-Spin Approximation Hamiltonian
78(4)
4.1.2 Multi-Spin Hamiltonian
82(1)
4.2 Quantum Tunneling of Magnetization in High-Symmetry Mn3 Single-Molecule Magnets
83(10)
4.2.1 The Mn3 Single-Molecule Magnet
84(1)
4.2.2 QTM Selection Rules in Mn3
85(3)
4.2.3 The Influence of Disorder on QTM
88(4)
4.2.4 Berry Phase Interference in Trigonal Symmetry
92(1)
4.3 Quantum Tunneling of Magnetization in the High-Symmetry Ni4 Single-Molecule Magnet
93(6)
4.3.1 The Ni4 Single-Molecule Magnet
93(3)
4.3.2 Quantum Tunneling of Magnetization in the Ni4 SMM
96(2)
4.3.3 Disorder
98(1)
4.4 Quantum Tunneling of Magnetization in Low-Symmetry Mn4 Single-Molecule Magnets
99(7)
4.4.1 The Mn4 Single-Molecule Magnets
99(1)
4.4.2 EPR and QTM Spectroscopy in Mn4 SMMs with and Without Solvent
100(3)
4.4.3 Berry Phase Interference in Mn4-Bet
103(3)
4.5 Summary and Outlook
106(7)
References
108(5)
Part II Beyond Single Molecules
5 Magnetic Avalanches in Molecular Magnets
113(16)
Myriam P. Sarachik
5.1 Background
113(3)
5.2 Temperature-Driven Magnetic Deflagration
116(7)
5.2.1 Avalanche Ignition
117(3)
5.2.2 Avalanche Speed
120(3)
5.3 Cold Deflagration
123(1)
5.4 Summary and Outlook for the Future
124(5)
References
125(4)
6 Theory of Deflagration and Fronts of Tunneling in Molecular Magnets
129(32)
D.A. Garanin
6.1 Introduction
129(3)
6.2 Magnetic Deflagration
132(7)
6.2.1 Ignition of Deflagration
134(1)
6.2.2 Deflagration Fronts
135(4)
6.3 Fronts of Tunneling
139(17)
6.3.1 Tunneling Effects in the Relaxation Rate
139(4)
6.3.2 Dipolar Field in Molecular Magnets
143(4)
6.3.3 Fronts of Tunneling at T = 0
147(4)
6.3.4 1d Theory of Quantum Deflagration
151(3)
6.3.5 3d Theory of Quantum Deflagration
154(2)
6.4 Discussion
156(5)
References
157(4)
7 Dipolar Magnetic Order in Crystals of Molecular Nanomagnets
161(30)
Fernando Luis
7.1 Introduction
161(4)
7.2 Theoretical Background
165(3)
7.2.1 Spin Hamiltonian
165(1)
7.2.2 Mean-Field Approximations
166(2)
7.3 Dipolar Order vs. Single-Molecule Magnet Behavior
168(4)
7.3.1 Magnetic Order and Relaxation Towards Thermal Equilibrium
168(1)
7.3.2 Influence of Dipolar Interactions on Magnetic Relaxation and Spin Tunneling
169(1)
7.3.3 Experimental Determination of the Average Interaction Fields
170(2)
7.4 Dipolar Order of Molecular Nanomagnets with Low Magnetic Anisotropy. Ferromagnetism in Mn6
172(3)
7.5 Dipolar Order in a Transverse Magnetic Field. Ferromagnetism in Mn12 Acetate
175(6)
7.5.1 Magnetic Ordering Via Pure Quantum Tunneling
175(1)
7.5.2 Quantum Annealing
175(1)
7.5.3 The Quantum Ising Model
176(1)
7.5.4 Magnetic Order in Mn12 Acetate
177(4)
7.6 Magnetic Order and Quantum Phase Transition in Fe8
181(5)
7.7 Conclusions and Outlook
186(5)
References
187(4)
8 Single-Chain Magnets
191(30)
Dante Gatteschi
Alessandro Vindigni
8.1 Introduction
191(3)
8.2 Thermal Equilibrium and Slow Dynamics in Ideal SCMs
194(4)
8.3 Tailoring SCMs by Building-Block Approach
198(3)
8.4 Realistic Spin Hamiltonians for Single-Chain Magnets
201(5)
8.5 Glauber Model and Single-Chain Magnets
206(5)
8.6 Glauber Model for Finite Chains
211(4)
8.7 Beyond the Glauber Model
215(2)
8.8 Conclusion and Perspectives
217(4)
References
218(3)
9 Magnetism of Metal Phthalocyanines
221(28)
Juan Bartolome
Carlos Monton
Ivan K. Schuller
9.1 Introduction
221(1)
9.2 Solid State MPcs
222(7)
9.3 MPc Thin Films
229(5)
9.4 MPc Molecules Adsorbed on Substrates
234(5)
9.5 Perspectives of MPcs
239(10)
References
242(7)
Part III Applications
10 Potentialities of Molecular Nanomagnets for Information Technologies
249(26)
Marco Affronte
Filippo Troiani
10.1 Introduction
249(2)
10.2 Classical and Quantum Bits
251(6)
10.3 Issues, Trends and Benchmarks of Information Technologies
257(5)
10.4 Quantum Computation
262(8)
10.5 Conclusions and Future Directions
270(5)
References
270(5)
11 Molecular Magnets for Quantum Information Processing
275(22)
Kevin van Hoogdalem
Dimitrije Stepanenko
Daniel Loss
11.1 Introduction
275(3)
11.2 Encoding of Qubits in Molecular Magnets
278(2)
11.3 Single-Qubit Rotations and the Spin-Electric Effect
280(6)
11.4 Two-Qubit Gates
286(2)
11.5 Decoherence in Molecular Magnets
288(3)
11.6 Initialization and Read-out
291(1)
11.7 Grover's Algorithm Using Molecular Magnets
292(5)
References
294(3)
12 Single-Molecule Spintronics
297(22)
Enrique Burzuri
Herre S.J. van der Zant
12.1 Introduction
297(2)
12.1.1 How to Detect Spin in Magnetic Molecules?
298(1)
12.2 Coulomb Blockade
299(2)
12.3 Spectroscopy of Magnetic Spin States
301(6)
12.3.1 Weak Coupling: SET Excitations
302(1)
12.3.2 Intermediate Coupling: Inelastic Spin-Flip Co-tunneling Process
303(1)
12.3.3 Kondo Correlations
304(1)
12.3.4 Ground State to Ground State: Gate Spectroscopy
305(2)
12.3.5 Summary
307(1)
12.4 Fabrication of a Spin Transistor
307(3)
12.4.1 Electron-Beam Lithography
307(2)
12.4.2 Electromigration
309(1)
12.4.3 Preliminary Characterization
310(1)
12.5 A Practical Example. The Fe4 Single-Molecule Magnet
310(5)
12.5.1 Why the Fe4 Single-Molecule Magnet?
310(2)
12.5.2 Spin Excitations: Inelastic Spin Flip Spectroscopy
312(1)
12.5.3 Gate-Voltage Spectroscopy
313(1)
12.5.4 Kondo Excitations and High-Spin State
314(1)
12.6 Future Directions
315(4)
12.6.1 Quantum Tunneling of the Magnetization and Berry Phase
315(1)
12.6.2 Ferromagnetic Electrodes
316(1)
12.6.3 Spin Crossover Molecules
316(1)
References
317(2)
13 Molecular Quantum Spintronics Using Single-Molecule Magnets
319(46)
Marc Ganzhorn
Wolfgang Wernsdorfer
13.1 Introduction
319(1)
13.2 Molecular Nanomagnets for Molecular Spintronics
320(1)
13.3 Introduction to Molecular Spintronics
321(7)
13.3.1 Direct Coupling Scheme
322(2)
13.3.2 Indirect Coupling Scheme
324(1)
13.3.3 Magnetic Torque Detector or Probing Via Mechanical Motion
325(2)
13.3.4 NanoSQUID or Probing Via Magnetic Flux
327(1)
13.4 Magnetism of the TbPc2 Molecular Nanomagnet
328(7)
13.4.1 Molecular Structure
329(1)
13.4.2 Spin Hamiltonian
329(3)
13.4.3 Quantum Tunneling of Magnetization and Landau-Zener Model
332(1)
13.4.4 Spin-Lattice Relaxation
333(2)
13.5 Molecular Quantum Spintronics with a Single TbPc2
335(25)
13.5.1 Read-out of the Electronic Spin
336(8)
13.5.2 Read-out of the Nuclear Spin
344(10)
13.5.3 Coupling of a Single TbPc2 SMM to a Carbon Nanotube's Mechanical Motion
354(4)
13.5.4 Coupling of a Single TbPc2 SMM to a Quantum Dot
358(2)
13.6 Conclusion
360(5)
References
361(4)
14 Molecule-Based Magnetic Coolers: Measurement, Design and Application
365(24)
Marco Evangelisti
14.1 Introduction
365(2)
14.2 Theoretical Framework
367(1)
14.3 Experimental Evaluation of the MCE
368(5)
14.3.1 Indirect Methods
368(2)
14.3.2 Direct Measurements
370(3)
14.4 Designing the Ideal Refrigerant
373(9)
14.4.1 Magnetic Anisotropy
374(1)
14.4.2 Magnetic Interactions
375(3)
14.4.3 Magnetic Density and Choice of Units
378(4)
14.5 Towards Applications: On-Chip Refrigeration
382(3)
14.6 Concluding Remarks
385(4)
References
385(4)
Index 389