Atnaujinkite slapukų nuostatas

Monoidal Categories and the Gerstenhaber Bracket in Hochschild Cohomology [Minkštas viršelis]

  • Formatas: Paperback / softback, 146 pages, aukštis x plotis: 254x178 mm, weight: 241 g
  • Serija: Memoirs of the American Mathematical Society
  • Išleidimo metai: 30-Sep-2016
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470419955
  • ISBN-13: 9781470419950
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 146 pages, aukštis x plotis: 254x178 mm, weight: 241 g
  • Serija: Memoirs of the American Mathematical Society
  • Išleidimo metai: 30-Sep-2016
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470419955
  • ISBN-13: 9781470419950
Kitos knygos pagal šią temą:
In this monograph, the author extends S. Schwede's exact sequence interpretation of the Gerstenhaber bracket in Hochschild cohomology to certain exact and monoidal categories. Therefore the author establishes an explicit description of an isomorphism by A. Neeman and V. Retakh, which links $\mathrm{Ext}$-groups with fundamental groups of categories of extensions and relies on expressing the fundamental group of a (small) category by means of the associated Quillen groupoid.

As a main result, the author shows that his construction behaves well with respect to structure preserving functors between exact monoidal categories. The author uses his main result to conclude, that the graded Lie bracket in Hochschild cohomology is an invariant under Morita equivalence. For quasi-triangular bialgebras, he further determines a significant part of the Lie bracket's kernel, and thereby proves a conjecture by L. Menichi. Along the way, the author introduces $n$-extension closed and entirely extension closed subcategories of abelian categories, and studies some of their properties.
Introduction 1(12)
Chapter 1 Prerequisites
13(10)
1.1 Exact categories
13(3)
1.2 Monoidal categories
16(4)
1.3 Examples: Exact and monoidal categories
20(3)
Chapter 2 Extension categories
23(16)
2.1 Definition and properties
23(4)
2.2 Homotopy groups
27(3)
2.3 Lower homotopy groups of extension categories
30(5)
2.4 n-Extension closed subcategories
35(4)
Chapter 3 The Retakh isomorphism
39(20)
3.1 An explicit description
39(9)
3.2 Compatibility results
48(4)
3.3 Extension categories for monoidal categories
52(7)
Chapter 4 Hochschild cohomology
59(8)
4.1 Basic definitions
59(3)
4.2 Gerstenhaber algebras
62(5)
Chapter 5 A bracket for monoidal categories
67(26)
5.1 The Yoneda product
67(2)
5.2 The bracket and its properties
69(8)
5.3 The module case -- Schwede's original construction
77(4)
5.4 Morita equivalence
81(7)
5.5 The monoidal category of bimodules
88(5)
Chapter 6 Application I: The kernel of the Gerstenhaber bracket
93(20)
6.1 Introduction and motivation
93(2)
6.2 Bialgebroids
95(5)
6.3 A monoidal functor
100(7)
6.4 Comparison to Linckelmann's result
107(6)
Chapter 7 Application II: The Ext-algebra of the identity functor
113(12)
7.1 The evaluation functor
113(3)
7.2 Exact endofunctors
116(3)
7.3 Ext-algebras and adjoint functors
119(3)
7.4 Hochschild cohomology for abelian categories
122(3)
Acknowledgements
124(1)
Appendix A Basics
125(16)
A.1 Homological lemmas
125(2)
A.2 Algebras, coalgebras, bialgebras and Hopf algebras
127(7)
A.3 Examples: Hopf algebras
134(7)
Bibliography 141(1)
Main references 141(4)
Supplemental references 145
Reiner Hermann, Norwegian University of Science and Technology, Trondheim, Norway.