Atnaujinkite slapukų nuostatas

El. knyga: Monomial Ideals and Their Decompositions

  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 24-Oct-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319968766
  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 24-Oct-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319968766

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook on combinatorial commutative algebra focuses on properties of monomial ideals in polynomial rings and their connections with other areas of mathematics such as combinatorics, electrical engineering, topology, geometry, and homological algebra. Aimed toward advanced undergraduate students and graduate students who have taken a basic course in abstract algebra that includes polynomial rings and ideals, this book serves as a core text for a course in combinatorial commutative algebra or as preparation for more advanced courses in the area.  The text contains over 600 exercises to provide readers with a hands-on experience working with the material; the exercises include computations of specific examples and proofs of general results. Readers will receive a firsthand introduction to the computer algebra system Macaulay2 with tutorials and exercises for most sections of the text, preparing them for significant computational work in the area. Connections to non-monomial areas of abstract algebra, electrical engineering, combinatorics and other areas of mathematics are provided which give the reader a sense of how these ideas reach into other areas.

 

Recenzijos

The present book is thought as a gentle introduction to monomial ideals . All the chapters contain exercises and Macaulay 2 material for the computational exploration of the presented notions. (Christos Tatakis, zbMATH 1476.13002, 2022)

Primarily directed at advanced undergraduates, the text is also a valuable resource for graduate students and researchers who wish to learn more about the subject, providing an introduction to active research topics in combinatorial commutative algebra and its applications. the authors' presentation of monomial decompositions and their applications is an exciting, enlightening read and will serve an individual reader or class instructor well. (Timothy B. P. Clark, Mathematical Reviews, October, 2019) Each definition includes examples of reasonably common structures . This style makes the text accessible to advanced undergraduates. it will be useful to those who work in symbolic computation and theory. (Paul Cull, Computing Reviews, May 13, 2019)

Introduction xi
Overview xii
Audience xiii
Notes for the Instructor/Independent Reader xvii
Possible Course Outlines xviii
Acknowledgments xxiii
Part I Monomial Ideals
1 Fundamental Properties of Monomial Ideals
5(28)
1.1 Monomial Ideals
5(8)
1.2 Integral Domains (optional)
13(2)
1.3 Generators of Monomial Ideals
15(9)
1.4 Noetherian Rings (optional)
24(4)
1.5 Exploration: Counting Monomials
28(3)
1.6 Exploration: Numbers of Generators
31(2)
2 Operations on Monomial Ideals
33(48)
2.1 Intersections of Monomial Ideals
34(6)
2.2 Unique Factorization Domains (optional)
40(8)
2.3 Monomial Radicals
48(8)
2.4 Exploration: Reduced Rings
56(3)
2.5 Colons of Monomial Ideals
59(5)
2.6 Bracket Powers of Monomial Ideals
64(5)
2.7 Exploration: Saturation
69(4)
2.8 Exploration: Generalized Bracket Powers
73(4)
2.9 Exploration: Comparing Bracket Powers and Ordinary Powers
77(4)
3 M-Irreducible Ideals and Decompositions
81(34)
3.1 M-Irreducible Monomial Ideals
81(6)
3.2 Irreducible Ideals (optional)
87(8)
3.3 M-Irreducible Decompositions
95(7)
3.4 Irreducible Decompositions (optional)
102(4)
3.5 Exploration: Decompositions in Two Variables, part I
106(9)
Part II Monomial Ideals and Other Areas
4 Connections with Combinatorics
115(46)
4.1 Square-Free Monomial Ideals
115(6)
4.2 Graphs and Edge Ideals
121(4)
4.3 Decompositions of Edge Ideals
125(6)
4.4 Simplicial Complexes and Stanley-Reisner Ideals
131(8)
4.5 Decompositions of Stanley-Reisner Ideals
139(7)
4.6 Facet Ideals and Their Decompositions
146(6)
4.7 Exploration: Alexander Duality
152(9)
5 Connections with Other Areas
161(60)
5.1 Krull Dimension
161(4)
5.2 Vertex Covers and PMU Placement
165(10)
5.3 Cohen-Macaulayness and the Upper Bound Theorem
175(13)
5.4 Hilbert Functions and Initial Ideals
188(11)
5.5 Resolutions of Monomial Ideals
199(22)
Part III Decomposing Monomial Ideals
6 Parametric Decompositions of Monomial Ideals
221(40)
6.1 Parameter Ideals and Parametric Decompositions
221(7)
6.2 Corner Elements
228(13)
6.3 Finding Corner Elements in Two Variables
241(5)
6.4 Finding Corner Elements in General
246(6)
6.5 Exploration: Decompositions in Two Variables, part II
252(1)
6.6 Exploration: Decompositions of Some Powers of Ideals
253(3)
6.7 Exploration: Macaulay Inverse Systems
256(5)
7 Computing M-Irreducible Decompositions
261(36)
7.1 M-Irreducible Decompositions of Monomial Radicals
261(3)
7.2 M-Irreducible Decompositions of Bracket Powers
264(3)
7.3 M-Irreducible Decompositions of Sums
267(4)
7.4 M-Irreducible Decompositions of Colon Ideals
271(5)
7.5 Computing General M-Irreducible Decompositions
276(7)
7.6 Exploration: Edge, Stanley-Reisner, and Facet Ideals Revisited
283(2)
7.7 Exploration: Decompositions of Saturations
285(2)
7.8 Exploration: Decompositions of Generalized Bracket Powers
287(2)
7.9 Exploration: Decompositions of Products of Monomial Ideals
289
Part IV Commutative Algebra and Macaulay2
Appendix A: Foundational Concepts 297(34)
A.1 Rings
297(5)
A.2 Polynomial Rings
302(4)
A.3 Ideals and Generators
306(4)
A.4 Sums of Ideals
310(2)
A.5 Products and Powers of Ideals
312(3)
A.6 Colon Ideals
315(1)
A.7 Radicals of Ideals
316(3)
A.8 Quotient Rings
319(4)
A.9 Partial Orders and Monomial Orders
323(4)
A.10 Exploration: Algebraic Geometry
327(4)
Appendix B: Introduction to Macaulay2 331(24)
B.1 Rings
331(2)
B.2 Polynomial Rings
333(2)
B.3 Ideals and Generators
335(2)
B.4 Sums of Ideals
337(1)
B.5 Products and Powers of Ideals
338(1)
B.6 Colon Ideals
339(1)
B.7 Radicals of Ideals
340(2)
B.8 Quotient Rings
342(1)
B.9 Monomial Orders
343(6)
Further Reading
349(2)
References
351(4)
Index of Macaulay2 Commands, by Command 355(6)
Index of Macaulay2 Commands, by Description 361(10)
Index of Names 371(2)
Index of Symbols 373(4)
Index of Terminology 377
W. Frank Moore is an Associate Professor of Mathematics at Wake Forest University. He earned his PhD from the University of Nebraska-Lincoln, and his research is in the homological algebra of commutative and noncommutative rings.





Mark Rogers is a Professor in the Department of Mathematics at Missouri State University. He earned his PhD from Purdue University, and his area of research is commutative algebra.











Sean Sather-Wagstaff is an Associate Professor in Clemson Universitys department of Mathematical Sciences. He earned his PhD from the University of Utah, specializing in homological commutative algebra.