Atnaujinkite slapukų nuostatas

El. knyga: Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

(Virginia Polytechnic Institute and State University)
  • Formatas: EPUB+DRM
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 26-Nov-2018
  • Leidėjas: Wiley-ASME Press
  • Kalba: eng
  • ISBN-13: 9781119518501
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 26-Nov-2018
  • Leidėjas: Wiley-ASME Press
  • Kalba: eng
  • ISBN-13: 9781119518501
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A groundbreaking guide dedicated exclusively to the MCRT method in radiation heat transfer and applied optics 

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics offers the most modern and up-to-date approach to radiation heat transfer modelling and performance evaluation of optical instruments. The Monte Carlo ray-trace (MCRT) method is based on the statistically predictable behavior of entities, called rays, which describe the paths followed by energy bundles as they are emitted, reflected, scattered, refracted, diffracted and ultimately absorbed.

The author – a noted expert on the subject – covers a wide variety of topics including the mathematics and statistics of ray tracing, the physics of thermal radiation, basic principles of geometrical and physical optics, radiant heat exchange among surfaces and within participating media, and the statistical evaluation of uncertainty of results obtained using the method. The book is a guide to help formulate and solve models that accurately describe the distribution of radiant energy in thermal and optical systems of practical engineering interest. This important guide:

  • Combines radiation heat transfer and applied optics into a single discipline
  • Covers the MCRT method, which has emerged as the dominant tool for radiation heat transfer modelling
  • Helps readers to formulate and solve models that describe the distribution of radiant energy
  • Features pages of color images and a wealth of line drawings

Written for faculty and graduate students in mechanical and aerospace engineering and applied optics professionals, The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics is the first book dedicated exclusively to the MCRT method. 

Series Preface xi
Preface xiii
Acknowledgments xvii
About the Companion Website xix
1 Fundamentals of Ray Tracing
1(28)
1.1 Rays and Ray Segments
1(1)
1.2 The Enclosure
2(1)
1.3 Mathematical Preliminaries
2(9)
1.4 Ideal Models for Emission, Reflection, and Absorption of Rays
11(6)
1.5 Scattering and Refraction
17(1)
1.6 Meshing and Indexing
18(11)
Problems
21(7)
Reference
28(1)
2 Fundamentals of Thermal Radiation
29(38)
2.1 Thermal Radiation
29(2)
2.2 Terminology
31(1)
2.3 Intensity of Radiation (Radiance)
32(2)
2.4 Directional Spectral Emissive Power
34(1)
2.5 Hemispherical Spectral Emissive Power
34(1)
2.6 Hemispherical Total Emissive Power
34(1)
2.7 The Blackbody Radiation Distribution Function
35(3)
2.8 Blackbody Properties
38(2)
2.9 Emission and Absorption Mechanisms
40(2)
2.10 Definition of Models for Emission, Absorption, and Reflection
42(10)
2.11 Introduction to the Radiation Behavior of Surfaces
52(2)
2.12 Radiation Behavior of Surfaces Composed of Electrical Non-Conductors (Dielectrics)
54(5)
2.13 Radiation Behavior of Surfaces Composed of Electrical Conductors (Metals)
59(8)
Problems
61(4)
References
65(2)
3 The Radiation Distribution Factor for Diffuse-Specular Gray Surfaces
67(36)
3.1 The Monte Carlo Ray-Trace (MCRT) Method and the Radiation Distribution Factor
67(1)
3.2 Properties of the Total Radiation Distribution Factor
68(1)
3.3 Estimation of the Distribution Factor Matrix Using the MCRT Method
69(14)
3.4 Binning of Rays on a Surface Element; Illustrative Example
83(2)
3.5 Case Study: Thermal and Optical Analysis of a Radiometric Instrument
85(9)
3.6 Use of Radiation Distribution Factors for the Case of Specified Surface Temperatures
94(2)
3.7 Use of Radiation Distribution Factors When Some Surface Net Heat Fluxes Are Specified
96(7)
Problems
97(4)
Reference
101(2)
4 Extension of the MCRT Method to Non-Diffuse, Non-Gray Enclosures
103(40)
4.1 Bidirectional Spectral Surfaces
103(3)
4.2 Principles Underlying a Practical Bidirectional Reflection Model
106(3)
4.3 First Example: A Highly Absorptive Surface Whose Reflectivity is Strongly Specular
109(10)
4.4 Second Example: A Highly Reflective Surface Whose Reflectivity is Strongly Diffuse
119(8)
4.5 The Band-Averaged Spectral Radiation Distribution Factor
127(6)
4.6 Use of the Band-Averaged Spectral Radiation Distribution Factor for the Case of Specified Surface Temperatures
133(1)
4.7 Use of the Band-Averaged Spectral Radiation Distribution Factor for the Case of One or More Specified Surface Net Heat Fluxes
134(9)
Problems
138(4)
References
142(1)
5 The MCRT Method for Participating Media
143(40)
5.1 Radiation in a Participating Medium
143(3)
5.2 Example: The Absorption Filter
146(8)
5.3 Ray Tracing in a Participating Medium
154(17)
5.4 Estimating the Radiation Distribution Factors in Participating Media
171(1)
5.5 Using the Radiation Distribution Factors When All Temperatures are Specified
172(1)
5.6 Using the Radiation Distribution Factors for a Mixture of Specified Temperatures and Specified Heat Transfer Rates
173(2)
5.7 Simulating Infrared Images
175(8)
Problems
178(1)
References
179(4)
6 Extension of the MCRT Method to Physical Optics
183(30)
6.1 Some Ideas from Physical Optics
183(2)
6.2 Geometrical Versus Physical Optics
185(1)
6.3 Anatomy of a Ray Suitable for Physical Optics Applications
186(1)
6.4 Modeling of Polarization Effects: A Case Study
187(8)
6.5 Diffraction and Interference Effects: A Case Study
195(3)
6.6 Monte Carlo Ray-Trace Diffraction Based on the Huygens-Fresnel Principle
198(15)
Problems
209(1)
References
210(3)
7 Statistical Estimation of Uncertainty in the MCRT Method
213(28)
7.1 Statement of the Problem
213(1)
7.2 Statistical Inference
214(4)
7.3 Hypothesis Testing for Population Means
218(2)
7.4 Confidence Intervals for Population Proportions
220(4)
7.5 Effects of Uncertainties in the Enclosure Geometry and Surface Models
224(1)
7.6 Single-Sample Versus Multiple-Sample Experiments
225(1)
7.7 Evaluation of Aggravated Uncertainty
226(1)
7.8 Uncertainty in Temperature and Heat Transfer Results
227(2)
7.9 Application to the Case of Specified Surface Temperatures
229(3)
7.10 Experimental Design of MCRT Algorithms
232(9)
Problems
237(2)
References
239(2)
A Random Number Generators and Autoregression Analysis
241(14)
A.1 Pseudo-Random Number Generators
242(1)
A.2 Properties of a "Good" Pseudo-Random Number Generator
242(3)
A.3 A "Minimal Standard" Pseudo-Random Number Generator
245(2)
A.4 Autoregression Analysis
247(8)
Problems
253(1)
References
254(1)
Index 255
J. Robert Mahan is Professor Emeritus of Mechanical Engineering at Virginia Polytechnic Institute and State University, where he leads the NASA-funded Thermal Radiation Group.