Preface |
|
xi | |
|
|
1 | (20) |
|
|
1 | (2) |
|
|
3 | (2) |
|
§1.3 Drawing on a Surface |
|
|
5 | (3) |
|
|
8 | (1) |
|
§1.5 Hyperbolic Geometry and the Octagon |
|
|
9 | (2) |
|
§1.6 Complex Analysis and Riemann Surfaces |
|
|
11 | (2) |
|
§1.7 Cone Surfaces and Translation Surfaces |
|
|
13 | (1) |
|
§1.8 The Modular Group and the Veech Group |
|
|
14 | (2) |
|
|
16 | (1) |
|
|
17 | (4) |
|
Part 1 Surfaces and Topology |
|
|
|
Chapter 2 Definition of a Surface |
|
|
21 | (10) |
|
|
21 | (1) |
|
|
22 | (1) |
|
§2.3 Open and Closed Sets |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (3) |
|
Chapter 3 The Gluing Construction |
|
|
31 | (12) |
|
§3.1 Gluing Spaces Together |
|
|
31 | (2) |
|
§3.2 The Gluing Construction in Action |
|
|
33 | (3) |
|
§3.3 The Classification of Surfaces |
|
|
36 | (1) |
|
§3.4 The Euler Characteristic |
|
|
37 | (6) |
|
Chapter 4 The Fundamental Group |
|
|
43 | (10) |
|
|
43 | (2) |
|
§4.2 Homotopy Equivalence |
|
|
45 | (1) |
|
§4.3 The Fundamental Group |
|
|
46 | (2) |
|
§4.4 Changing the Basepoint |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (2) |
|
Chapter 5 Examples of Fundamental Groups |
|
|
53 | (12) |
|
|
53 | (3) |
|
|
56 | (1) |
|
§5.3 The Fundamental Theorem of Algebra |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
§5.6 The Projective Plane |
|
|
59 | (1) |
|
|
59 | (3) |
|
§5.8 The Poincare Homology Sphere |
|
|
62 | (3) |
|
Chapter 6 Covering Spaces and the Deck Group |
|
|
65 | (14) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (1) |
|
§6.5 Simply Connected Spaces |
|
|
70 | (1) |
|
§6.6 The Isomorphism Theorem |
|
|
71 | (1) |
|
§6.7 The Bolzano---Weierstrass Theorem |
|
|
72 | (1) |
|
§6.8 The Lifting Property |
|
|
73 | (1) |
|
§6.9 Proof of the Isomorphism Theorem |
|
|
74 | (5) |
|
Chapter 7 Existence of Universal Covers |
|
|
79 | (8) |
|
|
80 | (2) |
|
§7.2 The Covering Property |
|
|
82 | (2) |
|
|
84 | (3) |
|
Part 2 Surfaces and Geometry |
|
|
|
Chapter 8 Euclidean Geometry |
|
|
87 | (16) |
|
|
87 | (3) |
|
§8.2 The Pythagorean Theorem |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (4) |
|
§8.5 The Polygon Dissection Theorem |
|
|
96 | (2) |
|
|
98 | (2) |
|
§8.7 Green's Theorem for Polygons |
|
|
100 | (3) |
|
Chapter 9 Spherical Geometry |
|
|
103 | (12) |
|
§9.1 Metrics, Tangent Planes, and Isometries |
|
|
103 | (2) |
|
|
105 | (2) |
|
|
107 | (3) |
|
|
110 | (1) |
|
§9.5 Stereographic Projection |
|
|
111 | (2) |
|
§9.6 The Hairy Ball Theorem |
|
|
113 | (2) |
|
Chapter 10 Hyperbolic Geometry |
|
|
115 | (18) |
|
§10.1 Linear Fractional Transformations |
|
|
115 | (1) |
|
§10.2 Circle Preserving Property |
|
|
116 | (2) |
|
§10.3 The Upper Half-Plane Model |
|
|
118 | (3) |
|
§10.4 Another Point of View |
|
|
121 | (1) |
|
|
121 | (2) |
|
|
123 | (2) |
|
|
125 | (2) |
|
|
127 | (3) |
|
§10.9 Classification of Isometries |
|
|
130 | (3) |
|
Chapter 11 Riemannian Metrics on Surfaces |
|
|
133 | (10) |
|
§11.1 Curves in the Plane |
|
|
133 | (1) |
|
§11.2 Riemannian Metrics on the Plane |
|
|
134 | (1) |
|
§11.3 Diffeomorphisms and Isometries |
|
|
135 | (1) |
|
§11.4 Atlases and Smooth Surfaces |
|
|
136 | (1) |
|
§11.5 Smooth Curves and the Tangent Plane |
|
|
137 | (2) |
|
§11.6 Riemannian Surfaces |
|
|
139 | (4) |
|
Chapter 12 Hyperbolic Surfaces |
|
|
143 | (20) |
|
|
143 | (2) |
|
|
145 | (2) |
|
§12.3 Gluing Recipes Lead to Surfaces |
|
|
147 | (2) |
|
|
149 | (1) |
|
§12.5 Geodesic Triangulations |
|
|
150 | (2) |
|
|
152 | (2) |
|
|
154 | (2) |
|
§12.8 The Hyperbolic Cover |
|
|
156 | (7) |
|
Part 3 Surfaces and Complex Analysis |
|
|
|
Chapter 13 A Primer on Complex Analysis |
|
|
163 | (14) |
|
|
163 | (2) |
|
|
165 | (2) |
|
§13.3 The Cauchy Integral Formula |
|
|
167 | (1) |
|
|
168 | (2) |
|
§13.5 The Maximum Principle |
|
|
170 | (1) |
|
§13.6 Removable Singularities |
|
|
171 | (1) |
|
|
172 | (2) |
|
|
174 | (3) |
|
Chapter 14 Disk and Plane Rigidity |
|
|
177 | (6) |
|
|
177 | (2) |
|
§14.2 Liouville's Theorem |
|
|
179 | (2) |
|
§14.3 Stereographic Projection Revisited |
|
|
181 | (2) |
|
Chapter 15 The Schwarz---Christoffel Transformation |
|
|
183 | (12) |
|
§15.1 The Basic Construction |
|
|
184 | (1) |
|
§15.2 The Inverse Function Theorem |
|
|
185 | (1) |
|
§15.3 Proof of Theorem 15.1 |
|
|
186 | (2) |
|
§15.4 The Range of Possibilities |
|
|
188 | (1) |
|
§15.5 Invariance of Domain |
|
|
189 | (1) |
|
§15.6 The Existence Proof |
|
|
190 | (5) |
|
Chapter 16 Riemann Surfaces and Uniformization |
|
|
195 | (12) |
|
|
195 | (2) |
|
§16.2 Maps Between Riemann Surfaces |
|
|
197 | (2) |
|
§16.3 The Riemann Mapping Theorem |
|
|
199 | (2) |
|
§16.4 The Uniformization Theorem |
|
|
201 | (1) |
|
§16.5 The Small Picard Theorem |
|
|
202 | (1) |
|
§16.6 Implications for Compact Surfaces |
|
|
203 | (4) |
|
Part 4 Flat Cone Surfaces |
|
|
|
Chapter 17 Flat Cone Surfaces |
|
|
207 | (14) |
|
§17.1 Sectors and Euclidean Cones |
|
|
207 | (1) |
|
§17.2 Euclidean Cone Surfaces |
|
|
208 | (1) |
|
§17.3 The Gauss---Bonnet Theorem |
|
|
209 | (2) |
|
§17.4 Translation Surfaces |
|
|
211 | (2) |
|
§17.5 Billiards and Translation Surfaces |
|
|
213 | (4) |
|
§17.6 Special Maps on a Translation Surface |
|
|
217 | (2) |
|
§17.7 Existence of Periodic Billiard Paths |
|
|
219 | (2) |
|
Chapter 18 Translation Surfaces and the Veech Group |
|
|
221 | (18) |
|
§18.1 Affine Automorphisms |
|
|
221 | (2) |
|
§18.2 The Diffential Representation |
|
|
223 | (1) |
|
§18.3 Hyperbolic Group Actions |
|
|
224 | (2) |
|
§18.4 Proof of Theorem 18.1 |
|
|
226 | (2) |
|
|
228 | (1) |
|
§18.6 Linear and Hyperbolic Reflections |
|
|
229 | (3) |
|
§18.7 Behold, The Double Octagon! |
|
|
232 | (7) |
|
Part 5 The Totality of Surfaces |
|
|
|
Chapter 19 Continued Fractions |
|
|
239 | (12) |
|
|
239 | (2) |
|
§19.2 Continued Fractions |
|
|
241 | (1) |
|
|
242 | (2) |
|
§19.4 Structure of the Modular Group |
|
|
244 | (1) |
|
§19.5 Continued Fractions and the Farey Graph |
|
|
245 | (2) |
|
§19.6 The Irrational Case |
|
|
247 | (4) |
|
Chapter 20 Teichmuller Space and Moduli Space |
|
|
251 | (12) |
|
|
251 | (1) |
|
|
252 | (2) |
|
§20.3 The Modular Group Again |
|
|
254 | (2) |
|
|
256 | (2) |
|
|
258 | (2) |
|
§20.6 The Mapping Class Group |
|
|
260 | (3) |
|
Chapter 21 Topology of Teichmuller Space |
|
|
263 | (12) |
|
|
263 | (2) |
|
§21.2 Pants Decompositions |
|
|
265 | (2) |
|
§21.3 Special Maps and Triples |
|
|
267 | (2) |
|
§21.4 The End of the Proof |
|
|
269 | (6) |
|
|
|
Chapter 22 The Banach---Tarski Theorem |
|
|
275 | (12) |
|
|
275 | (1) |
|
§22.2 The Schroeder---Bernstein Theorem |
|
|
276 | (2) |
|
§22.3 The Doubling Theorem |
|
|
278 | (1) |
|
|
279 | (1) |
|
§22.5 The Depleted Ball Theorem |
|
|
280 | (2) |
|
§22.6 The Injective Homomorphism |
|
|
282 | (5) |
|
Chapter 23 Dehn's Dissection Theorem |
|
|
287 | (8) |
|
|
287 | (1) |
|
|
288 | (1) |
|
§23.3 Irrationality Proof |
|
|
289 | (1) |
|
§23.4 Rational Vector Spaces |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (2) |
|
|
294 | (1) |
|
Chapter 24 The Cauchy Rigidity Theorem |
|
|
295 | (14) |
|
|
295 | (1) |
|
|
296 | (1) |
|
§24.3 Outline of the Proof |
|
|
297 | (1) |
|
§24.4 Proof of Lemma 24.3 |
|
|
298 | (3) |
|
§24.5 Proof of Lemma 24.2 |
|
|
301 | (2) |
|
§24.6 Euclidean Intuition Does Not Work |
|
|
303 | (1) |
|
§24.7 Proof of Cauchy's Arm Lemma |
|
|
304 | (5) |
Bibliography |
|
309 | (2) |
Index |
|
311 | |