Atnaujinkite slapukų nuostatas

El. knyga: MPLS in the SDN Era: Interoperable Scenarios to Make Networks Scale to New Services

4.56/5 (35 ratings by Goodreads)
  • Formatas: 920 pages
  • Išleidimo metai: 07-Dec-2015
  • Leidėjas: O'Reilly Media
  • Kalba: eng
  • ISBN-13: 9781491905432
Kitos knygos pagal šią temą:
  • Formatas: 920 pages
  • Išleidimo metai: 07-Dec-2015
  • Leidėjas: O'Reilly Media
  • Kalba: eng
  • ISBN-13: 9781491905432
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

How can you make multivendor services work smoothly on today's complex networks? This practical book shows you how to deploy a large portfolio of multivendor Multiprotocol Label Switching (MPLS) services on networks, down to the configuration level. You'll learn where Juniper Network's Junos, Cisco's IOS XR, and OpenContrail, interoperate and where they don't. Two network and cloud professionals from Juniper describe how MPLS technologies and applications have rapidly evolved through services and architectures such as Ethernet VPNs, Network Function Virtualization, Seamless MPLS, Egress Protection, External Path Computation, and more. This book contains no vendor bias or corporate messages, just solid information on how to get a multivendor network to function optimally. Topics include: Introduction to MPLS and Software-Defined Networking (SDN) The four MPLS Builders (LDP, RSVP-TE, IGP SPRING, and BGP) Layer 3 unicast and multicast MPLS services, Layer 2 VPN, VPLS, and Ethernet VPN Inter-domain MPLS Services Underlay and overlay architectures: data centers, NVO, and NFV Centralized Traffic Engineering and TE bandwidth reservations Scaling MPLS transport and services Transit fast restoration based on the IGP and RSVP-TE FIB optimization and egress service for fast restoration
Preface xv
1 Introduction to MPLS and SDN 1(42)
The Internet
1(4)
ISP Example Topology
5(14)
Router Types in a Service Provider
6(2)
BGP Configuration
8(5)
BGP Route Signaling and Redundancy
13(5)
Packet Forwarding in a BGP-Less Core
18(1)
MPLS
19(12)
MPLS in Action
20(2)
The MPLS Header
22(1)
MPLS Configuration and Forwarding Plane
23(7)
Forwarding Equivalence Class
30(1)
Again, What Is MPLS?
30(1)
OpenFlow
31(3)
OpenFlow-Flow-Based Forwarding
32(1)
OpenFlow-Openness and P4
33(1)
SDN
34(3)
Separation of the Control and Forwarding Planes
35(1)
SDN and the Protocols
36(1)
The SDN Era
37(6)
SDN-Era Use Cases
38(5)
2 The Four MPLS Builders 43(82)
LDP
44(24)
LDP Discovery and LDP Sessions
45(3)
LDP Label Mapping
48(8)
LDP and Equal-Cost Multipath
56(4)
LDP Implementation Details
60(4)
LDP Inter-Area
64(1)
Protecting LDP Networks from Traffic Blackholing
65(3)
RSVP-TE
68(24)
RSVP-TE LSP Fundamentals
70(8)
RSVP-TE in Action
78(7)
RSVP-Constrained Paths and ECMP
85(5)
Inter-Area RSVP-TE LSPs
90(1)
RSVP Auto Tunnel
91(1)
IGP and SPRING
92(12)
SPRING in Action
94(5)
SPRING Concepts
99(3)
SPRING Adjacency Segments
102(1)
A Comparison of LDP, RSVP-TE, and SPRING
103(1)
BGP-Labeled Unicast
104(21)
IGP-Free Large-Scale Data Centers
105(3)
BGP-LU Configuration
108(6)
Service Configuration in an IGP-Less Topology
114(5)
BGP-LU-Signaling and Forwarding Plane
119(2)
BGP-LU-SPRING Extensions
121(4)
3 Layer 3 Unicast MPLS Services 125(52)
6PE: IPv6 Transport in an IPv4/MPLS Core
126(11)
6PE-Backbone Configuration at the PEs
127(1)
6PE-RR Configuration
128(1)
6PE-Access Configuration at the PEs
129(2)
6PE-Signaling
131(2)
6PE-Forwarding Plane
133(4)
BGP/MPLS IP Virtual Private Networks
137(29)
Attachment Circuits and Access Virtualization
138(2)
L3VPN in a Nutshell
140(1)
L3VPN-Signaling
141(5)
L3VPN-Forwarding Plane
146(2)
L3VPN-Backbone Configuration at the PEs
148(1)
L3VPN-RR Configuration
149(1)
L3VPN-VRF Configuration at the PEs
150(4)
L3VPN-Routing Tables in Junos
154(2)
L3VPN-Service Label Allocation
156(1)
L3VPN-Topologies
157(6)
L3VPN-Loop Avoidance
163(2)
Internet Access from a VRF
165(1)
Route Target Constraint
166(4)
RTC-Signaling
166(2)
RTC-RR Configuration
168(1)
RTC-PE Configuration
169(1)
Coupling MPLS Services to Transport Planes
170(7)
Configuring Several Loopbacks in the Default Instance
170(1)
Signaling LSPs to Different Loopback Addresses
171(4)
Changing the Service Routes' BGP Next Hop
175(2)
4 Internet Multicast Over MPLS 177(42)
IP Multicast
178(3)
IP Multicast Protocols
179(1)
IP Multicast Modes
180(1)
Classic Internet Multicast
181(10)
Starting Multicast Sources and Receivers
181(2)
Signaling the Multicast Tree
183(5)
Classic Internet Multicast-Connecting Multicast Islands Across the Core
188(3)
Signaling Join State Between Remote PEs
191(8)
Carrier IP Multicast Flavors
191(1)
Direct Inter-PE Model-PE-to-PE PIM Adjacencies over Unicast IP Tunnels
192(2)
Direct Inter-PE Model-PE-to-PE PIM Adjacencies over Multicast IP Tunnels
194(3)
Direct Inter-PE Model-PE-PE PIM Adjacencies over MPLS Label- Switched Paths
197(1)
Beyond the Direct Inter-PE Model-Not Establishing PE-PE PIM Adjacencies
198(1)
Internet Multicast over MPLS with In-Band Multipoint LDP Signaling
199(20)
Multipoint LDP
200(1)
In-Band Signaling
201(7)
Life of a C-Multicast Packet in an mLDP P2MP LSP
208(5)
CE Multihoming
213(3)
mLDP In-Band and PIM ASM
216(1)
Other Internet Multicast over MPLS Flavors
217(2)
5 Multicast VPN 219(52)
BGP Multicast VPN with mLDP Transport
220(27)
MVPN Address Family
220(4)
Configuring BGP MVPN
224(2)
MVPN Site AD
226(2)
Signaling C-Multicast (S, G) Join State with BGP
228(6)
Signaling Provider Tunnels-BGP and the PMSI Attribute
234(7)
Signaling Provider Tunnels-Multipoint LDP for Transport
241(6)
BGP Multicast VPN with RSVP-TE P2MP Transport
247(10)
Advertising the Inclusive PMSI-RSVP-TE P2MP
248(2)
Advertising Selective PMSIs-RSVP-TE P2MP
250(2)
Signaling P- Tunnels with RSVP-TE P2MP
252(5)
BGP Multicast VPN with Ingress Replication
257(3)
Inclusive PMSI-IR
258(1)
Selective PMSI-IR
259(1)
BGP Multicast VPN with Other P- Tunnel Flavors
260(1)
CE Multihoming in BGP Multicast VPN
260(3)
Egress PE Redundancy
260(1)
Ingress PE Redundancy
260(2)
Choosing the Best RD Scheme
262(1)
BGP Multicast VPN with C-PIM ASM
263(5)
ASM Mode
263(3)
C-Rendezvous Point-PE and CE Configuration
266(1)
C-Multicast Signaling-ASM Mode with C-RP at the PEs
267(1)
Noncongruent C-Unicast and C-Multicast
268(3)
6 Point-to-Point Layer 2 VPNs 271(46)
L2VPN in a Nutshell
271(9)
L2VPN Use Cases
272(3)
L2VPN Topological Classification
275(1)
L2VPN Signaling and Transport
276(1)
P2P L2VPN-Varied Access Technologies
277(1)
L2VPN Flavors Covered in This Book
278(2)
VPWS Signaled with BGP
280(27)
BGP L2VPN Address Family
280(1)
BGP VPWS Configuration at the PEs
281(3)
BGP VPWS Signaling
284(5)
L2VPN Forwarding Plane
289(2)
BGP VPWS-CE Multihoming to Several PEs
291(6)
Ethernet OAM (802.3ah, 802.1ag)
297(1)
BGP VPWS-VLAN Tag Multiplexing
298(2)
BGP VPWS-VLAN Tag Translation and Manipulation
300(3)
BGP VPWS-PW Head-End (PWHE)
303(3)
BGP VPWS-Load Balancing
306(1)
VPWS Signaled with LDP
307(10)
LDP VPWS Configuration at the PEs
308(1)
LDP VPWS Signaling and Forwarding Planes
309(1)
LDP VPWS-CE Multihoming and PW Redundancy
310(2)
LDP VPWS-VLAN Tag Multiplexing
312(2)
LDP VPWS-VLAN Tag Translation and Manipulation
314(1)
LDP VPWS-PWHE
314(1)
LDP VPWS-FAT
315(2)
7 Virtual Private LAN Service 317(30)
Introduction to VPLS
317(3)
VPLS Signaled with BGP
320(6)
BGP VPLS Configuration
320(2)
BGP VPLS Signaling
322(2)
BGP VPLS-Efficient BUM Replication
324(2)
VPLS Signaled with LDP
326(6)
LDP VPLS Configuration
326(2)
LDP VPLS Signaling
328(2)
LDP VPLS-Autodiscovery via BGP
330(2)
VLANs and Learning Domains in VPLS
332(5)
VPLS in default VLAN mode
333(1)
Junos VPLS Instances-Normalized VLAN Mode
334(1)
Junos VPLS Instances-VLAN-Free Mode
335(1)
Junos VPLS Instances-VLAN-Aware Mode
336(1)
Junos Virtual Switches
336(1)
Integrated Routing and Bridging in VPLS
337(6)
IRB Configuration in Junos VPLS Instances
338(1)
IRB Configuration in Junos Virtual Switches
339(1)
IRB Configuration in IOS XR
339(1)
VPLS-IRB Redundancy and Traffic Tromboning
340(3)
Hierarchical VPLS
343(4)
H-VPLS Model with LDP Signaling
344(1)
H-VPLS Models with BGP for Autodiscovery and Signaling
345(2)
8 Ethernet VPN 347(42)
EVPN with MPLS Transport
347(23)
EVPN Versus VPLS
347(1)
EVPN Implementations
348(1)
EVPN-This Book's Topology
349(1)
BGP EVPN Address Family
349(1)
EVPN with MPLS Transport-Junos Configuration
350(1)
EVPN MPLS-Inclusive Tunnel and Autodiscovery
351(2)
EVPN with MPLS Transport-Advertising MACS
353(1)
EVPN with MPLS Transport-Intra-VLAN Bridging
354(2)
EVPN with MPLS Transport-Inter-VLAN Forwarding
356(6)
EVPN with MPLS Transport-All-Active Multihoming
362(8)
Ethernet VPN with VXLAN Transport
370(7)
Data Center Challenges
370(1)
VXLAN
371(2)
EVPN with VXLAN Transport-Motivation
373(1)
EVPN with VXLAN Transport-Forwarding Plane
374(1)
EVPN with VXLAN Transport-Junos Configuration
375(1)
EVPN with VXLAN Transport-Signaling
376(1)
Provider Backbone Bridging EVPN
377(12)
Introduction to PBB
377(2)
PBB EVPN in a Nutshell
379(1)
PBB EVPN Implementations
379(1)
PBB EVPN in Action
380(4)
PBB EVPN Configuration
384(3)
PBB EVPN Signaling
387(2)
9 Inter-Domain MPLS Services 389(32)
Inter-Domain Architectures
389(2)
This
Chapter's Example Topology
390(1)
Inter-AS Flavors
391(2)
Inter-AS Option A
393(2)
Inter-AS Option B
395(12)
Inter-AS Option B-Signaling and Forwarding
395(5)
Inter-AS Option B-Junos Configuration
400(3)
Inter-AS Option B-IOS XR Configuration
403(1)
Inter-AS Option B with Local VRF
404(3)
Inter-AS Option C
407(10)
BGP Sessions in Inter-AS Option C
408(1)
Inter-AS Option C-Signaling and Forwarding
409(3)
Inter-AS Option C-Configuration
412(5)
Carrier Supporting Carrier
417(2)
Inter-Domain RSVP-TE LSPs
419(2)
10 Underlay and Overlay Architectures 421(28)
Overlays and Underlays
422(1)
Overlay and Underlay Are Relative Concepts
422(1)
Other Fundamental Concepts
423(1)
Multiforwarder Network Devices
423(8)
Single-Chassis Network Devices-Forwarding Plane
424(1)
Single-Chassis Network Devices-Control Plane
425(6)
Multichassis Network Devices
431(1)
Legacy Data Center Networking
431(5)
The Challenges of L2 Bridged Networks
431(2)
Underlays in Modern Data Centers
433(1)
Overlays in Modern Data Centers
434(2)
Data Center Underlays-Fabrics
436(7)
IP Fabrics-Forwarding Plane
437(4)
IP Fabrics with Distributed-Only Control Plane
441(1)
IP Fabrics with Hybrid Control Plane
442(1)
Network Virtualization Overlay
443(6)
Compute Controllers
445(1)
Virtual Network Controllers
446(1)
NVO-Transport of Control Packets
447(1)
NVO-Agents
447(2)
11 Network Virtualization Overlays 449(40)
OpenContrail in a Nutshell
450(4)
OpenContrail Controllers
451(1)
Compute, Gateway, and Service Nodes
452(2)
Case Study: A Private Cloud
454(15)
vRouter-VM Link Addressing
457(1)
Initializing vNICs-XMPP as a DHCP-Like Protocol
458(4)
Interconnecting VMs-XMPP as a BGP-Like Protocol
462(4)
Interconnecting Subscribers to Cloud VMs
466(3)
Communication Between Virtual Networks
469(1)
Network Virtualization Overlay: L2_L3 Mode
470(8)
VXLAN Refresher
470(2)
Intrasubnet (L2) and Intersubnet (L3) Traffic
472(1)
Interconnecting VMs-IntraSubnet Traffic with VXLAN
473(3)
vRouter and Gateway Nodes-L2_L3 Mode
476(2)
Integrating Legacy L2 World into the NVO
478(11)
L2 Gateways and OVSDB
479(1)
ToR Service Nodes
480(1)
Binding a Bare-Metal Server to the Overlay
481(4)
MAC Learning with OVSDB
485(2)
Bare-Metal Servers and OVSDB-the Forwarding Plane
487(2)
12 Network Function Virtualization 489(26)
NFV in the Software-Defined Networking Era
490(4)
Virtual or Physical?
490(2)
Applicability of NFV to Service Providers
492(2)
NFV Practical Use Case
494(2)
NFV Forwarding Plane
496(2)
NFV-VRF Layout Models
498(6)
Legacy VRF Layout-Transit VN Model
500(1)
Modern VRF Layout-Two-VN Model
501(3)
NFV-Long Version of the Life of a Packet
504(2)
NFV Control Plane
506(2)
NFV Scaling and Redundancy
508(3)
NFV Scaling and Redundancy-Load Balancing
509(2)
Service Instance Flavors
511(4)
In-Network Service Instances
511(1)
In-Network-NAT Service Instances
512(1)
Transparent Service Instances
512(1)
Network Service Function Outside a VM or Container
512(3)
13 Introduction to Traffic Engineering 515(34)
TE Protocols
516(1)
TE LSP Types
516(1)
TE Information Distribution
517(9)
TE Distribution via OSPF
518(5)
TE Distribution via IS-IS
523(2)
The TED
525(1)
TE Static Constraints
526(18)
TE Metric
526(4)
Link Coloring-Administrative Group
530(5)
Extended Administrative Groups
535(1)
Shared Risk Link Group
536(8)
Egress Peer Engineering
544(5)
EPE Based on BGP-LU
545(4)
14 TE Bandwidth Reservations 549(24)
TE Static Bandwidth Constraints
549(11)
TE Bandwidth Attributes
550(1)
Default TE Interface Bandwidth
550(1)
Basic RSVP-TE Bandwidth Reservation
551(4)
LSP Priorities and Preemption
555(3)
Traffic Metering and Policing
558(2)
TE Auto-Bandwidth
560(8)
Introduction to Auto-Bandwidth
560(3)
Auto-Bandwidth in Action
563(3)
Auto-Bandwidth Configuration
566(1)
Auto-Bandwidth Deployment Considerations
567(1)
Dynamic Ingress LSP Splitting/Merging
568(5)
Dynamic Ingress LSP Splitting/Merging-Configuration
569(1)
Dynamic Ingress LSP Splitting/Merging in Action
570(3)
15 Centralized Traffic Engineering 573(18)
BGP Link-State
574(1)
PCEP
575(6)
PCE Implementations
576(1)
Interaction Between PCE and PCC
577(1)
PCE-Initiated RSVP-TE LSPs
577(3)
PCC-Initiated RSVP-TE LSPs
580(1)
PCC Label-Switched Path Signaling
581(1)
RSVP-TE LSPs
581(1)
SPRING (IGP) TE LSPs
581(1)
BGP LSPs
582(1)
PCC Configuration
582(4)
PCC Templates for PCE-Initiated LSPs
583(2)
Delegating PCC-Initiated LSPs to the PCE
585(1)
PCE Use Cases
586(5)
Extending the Link Attributes Palette
586(2)
Enhanced LSP Preemption Logic
588(1)
Diverse Paths
588(3)
16 Scaling MPLS Transport and Seamless MPLS 591(50)
Scaling an IGP Domain
592(3)
Scaling an IGP-OSPI,
594(1)
Scaling an IGP-IS-IS
594(1)
Scaling an IGP-MPLS Protocols
595(1)
Scaling RSVP-TE
595(4)
RSVP-TE Protocol Best Practices
597(2)
Intradomain LSP Hierarchy
599(8)
Tunneling RSVP-TE LSPs Inside RSVP-TE LSPs
600(1)
Tunneling LDP LSPs Inside RSVP-TE LSPs
600(5)
Tunneling SPRING LSPs Inside RSVP-TE LSPs
605(2)
Interdomain Transport Scaling
607(24)
Nonhierarchical Interdomain Tunnels
608(1)
Hierarchical Interdomain Tunnels (Seamless MPLS)
609(22)
IGP-Less Transport Scaling
631(10)
BGP-LU Hierarchy
632(6)
MPLS-Capable Servers and Static Labels
638(3)
17 Scaling MPLS Services 641(32)
Hierarchical L3VPN
641(32)
Default Route L3VPN Model
644(21)
Default Route with Local Routes L3VPN Model
665(4)
Pseudowire Head-End Termination L3VPN Model
669(4)
18 Transit Fast Restoration Based on the IGP 673(66)
Fast Restoration Concepts
673(3)
Ingress/Transit/Egress Transport Protection Concepts
673(1)
Global Repair Concepts
674(1)
Local Repair Concepts
675(1)
Loop-Free Alternates
676(19)
Per-Link LFA
678(5)
Per-Prefix LFA
683(12)
Extending LFA Backup Coverage
695(36)
LFA with LDP Backup Tunnels (Remote LFA)
696(7)
RLFA with RSVP-TE Backup Tunnels
703(4)
Topology Independent Fast ReRoute
707(3)
Modifying the default LFA selection algorithm
710(11)
Topology-Independent LFA
721(10)
Maximally Redundant Trees
731(8)
19 Transit Fast Restoration Based on RSVP-TE 739(44)
RSVP-TE Path Protection
739(12)
RSVP-TE Facility (Node-Link) Protection
751(24)
Manual Link Protection Bypass
753(9)
Manual Node-Link Protection Bypass
762(4)
Facility Protection in Action
766(5)
Automatic Protection Bypass
771(4)
RSVP-TE One-to-One Protection
775(6)
Transit Fast-Restoration Summary
781(2)
20 FIB Optimization for Fast Restoration 783(28)
Next-Hop Hierarchy
783(16)
Topology used in
Chapter 20 and in
Chapter 21
784(9)
Flat Next-Hop Structures
786(2)
Indirect Next Hop (Junos)
788(5)
Chained Composite Next Hop (Junos)
793(4)
BGP PIC Core (IOS XR)
797(2)
Preinstalled Next Hops to Multiple Egress PEs (PIC Edge)
799(12)
Active/Standby Next Hops to Egress PEs
802(3)
Active/Active Next Hops to Egress PEs
805(2)
BGP Best External Failover
807(4)
21 Egress Service Fast Restoration 811(68)
Service Mirroring Protection Concepts
811(4)
Combined Protector/Backup Egress PE Model
815(9)
Separate (Centralized) Protector and Backup Egress PE Model
824(10)
Context-ID Advertisement Methods
834(9)
Stub-Alias
835(3)
Stub-Proxy
838(5)
L3VPN PE-±CE Egress Link Protection
843(5)
Layer 2 VPN Service Mirroring
848(14)
BGP-Based L2VPN Service Mirroring
848(5)
LDP-Based L2VPN Service Mirroring
853(9)
Egress Peer Engineering Protection
862(6)
Protection in Seamless MPLS Architecture
868(10)
Border Link (ASBR-ASBR) Protection
868(1)
Border Node (ABR or ASBR) Protection
869(9)
Summary
878(1)
Index 879
Antonio "Ato" Sanchez-Monge has 15 years of experience in the IP/MPLS Networking industry, first with HP as Cisco partner, and then for the last 10 years in Juniper Networks, currently in the Advanced Services department. He is fluent in three languages and holds CCIE R&S # 13098, JNCIE-SP #222. Ato has written two This Week books, and two vDay One books in Juniper Networks, and is leading several knowledge management initiatives inside the company. MPLS is part of his daily job, from design down to the details, and is a go-to person inside Juniper for MPLS multicast topics. Krzysztof Szarkowicz is a Senior Professional Services Engineer at Juniper Networks. He has 20 years of experience in the industry, gained with HP Labs, Telia Research, Ericsson, Cisco, and finally in the last 8 years with Juniper Networks; and having performed varied roles as Researcher, Program Manager, Trainer and Consultant. Krzysztof speaks fluently four languages, and he holds both Cisco (CCIE-SP #14550) and Juniper (JNCIE-SP #400) certifications. Inside Juniper, he is a recognized MPLS expert with very extensive field experience on Seamless MPLS Mobile Backhaul, including several large-scale deployments. He has strong collaboration links with the Junos MPLS development team.