Atnaujinkite slapukų nuostatas

El. knyga: Multi-time Wave Functions: An Introduction

  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Physics
  • Išleidimo metai: 30-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030606916
  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Physics
  • Išleidimo metai: 30-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030606916

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The natural generalization of the quantum-mechanical N-particle wave function to relativistic space-time is a function of N space-time points, and thus of N time variables. This book, based on a collection of lectures given at a spring school in Tübingen in 2019, provides an accessible and concise introduction to the recent development of the theory of multi-time wave functions, their use in quantum field theory, their relation to detection probabilities, and the mathematical question of consistency of their time evolution equations. The book is intended for advanced students and researchers with an interest in relativity and quantum physics.
1 Introduction and Overview
1(16)
1.1 Relativistic Space-Time
1(1)
1.2 Dirac Equation
2(3)
1.3 What is a Multi-time Wave Function?
5(5)
1.4 Multi-time Schrodinger Equations
10(4)
1.5 Exercises
14(3)
2 Consistency Conditions and Interaction Potentials
17(14)
2.1 Rigorous Formulations of Consistency Conditions
17(6)
2.2 Interaction Potentials
23(3)
2.3 Short Range Interactions
26(1)
2.4 Exercises
27(4)
3 Relativistic Point Interactions in 1+1 Dimensions
31(10)
3.1 Setting
31(1)
3.2 Definition of the Model
31(2)
3.3 General Solution
33(1)
3.4 Boundary Conditions from Local Probability Conservation
34(3)
3.5 Main Result
37(1)
3.6 Lorentz Invariance
38(1)
3.7 Upshot
38(1)
3.8 Exercises
39(2)
4 Multi-time Quantum Field Theory
41(14)
4.1 Fock Space
41(2)
4.2 Emission-Absorption Model
43(2)
4.3 Multi-time Emission-Absorption Model
45(2)
4.4 Pair Creation Model
47(1)
4.5 Heisenberg Picture
48(2)
4.6 Tomonaga-Schwinger Approach
50(2)
4.7 Exercises
52(3)
5 Interior-Boundary Conditions for Multi-time Wave Functions
55(6)
5.1 What is an IBC?
55(1)
5.2 Setting
55(1)
5.3 Derivation of the IBC from Local Probability Conservation
56(1)
5.4 Relation to Creation and Annihilation Operators
57(1)
5.5 Sketch of How to Construct the Solution of the Model
58(1)
5.6 Conclusion and Outlook
59(1)
5.7 Exercises
60(1)
6 Born's Rule for Arbitrary Cauchy Surfaces
61(10)
6.1 The Curved Born Rule
61(2)
6.2 Some Special Cases
63(3)
6.3 Hypersurface Evolution
66(2)
6.4 Interaction Locality
68(1)
6.5 Propagation Locality
68(1)
6.6 Exercises
69(2)
7 Multi-time Integral Equations
71(10)
7.1 Motivation
71(1)
7.2 Derivation of a Suitable Integral Equation
71(2)
7.3 How to Understand the Time Evolution
73(1)
7.4 Non-relativistic Limit
74(1)
7.5 Action-at-a-Distance Form of the Multi-time Equations
74(2)
7.6 Mathematical Analysis of the Integral Equation
76(1)
7.7 Idea of the Proof
77(1)
7.8 On the Cauchy Problem
78(1)
7.9 Conclusions
78(1)
7.10 Outlook
79(1)
7.11 Exercises
79(2)
Conclusion 81(2)
References 83(4)
Index 87
Born in 1988 in Würzburg, Germany, Matthias Lienert studied physics in Göttingen and theoretical physics in Cambridge, UK. He obtained his PhD in Mathematics at Ludwig Maximilians University in Munich in 2015. Since then he has been a postdoctoral researcher in mathematical physics, in particular relativistic quantum theory, at Rutgers University, USA, and the University of Tübingen, Germany. 







Sören Petrat was born in 1985 in Castrop-Rauxel (Germany). After obtaining a PhD in mathematics from Ludwig Maximilians University Munich, he worked as a postdoctoral researcher at IST Austria, IAS Princeton, and Princeton University. Since 2017 he is Professor at Jacobs University Bremen. His field of research is mathematical physics, specifically many-body quantum mechanics and relativistic quantum physics.

Roderich Tumulka was born in 1972 in Frankfurt am Main (Germany), earned a Ph.D. in mathematics from Ludwig Maximilians University in Munich, taught at Rutgers University (USA) in 20072016, and has since taught at Eberhard Karls University in Tübingen (Germany). His field of research is mathematical physics, particularly the foundations of quantum mechanics, quantum field theory, and quantum statistical mechanics.