Preface |
|
xi | |
1 Multivectors and Multiforms |
|
1 | (20) |
|
1.1 Vectors and One-Forms, |
|
|
1 | (2) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2 Bivectors and Two-Forms, |
|
|
3 | (5) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.2.4 Contraction Products right floor apldownstyle and left floor apldownstyle |
|
|
6 | (2) |
|
1.2.5 Decomposition of Vectors and One-Forms |
|
|
8 | (1) |
|
1.3 Multivectors and Multiforms, |
|
|
8 | (8) |
|
1.3.1 Basis of Multivectors |
|
|
9 | (1) |
|
1.3.2 Bar Product of Multivectors and Multiforms |
|
|
10 | (1) |
|
1.3.3 Contraction of Trivectors and Three-Forms |
|
|
11 | (1) |
|
1.3.4 Contraction of Quadrivectors and Four-Forms |
|
|
12 | (1) |
|
1.3.5 Construction of Reciprocal Basis |
|
|
13 | (1) |
|
1.3.6 Contraction of Quintivector |
|
|
14 | (1) |
|
1.3.7 Generalized Bac-Cab Rules |
|
|
14 | (2) |
|
1.4 Some Properties of Bivectors and Two-Forms, |
|
|
16 | (2) |
|
|
16 | (1) |
|
1.4.2 Natural Dot Product |
|
|
17 | (1) |
|
1.4.3 Bivector as Mapping |
|
|
17 | (1) |
|
|
18 | (3) |
2 Dyadics |
|
21 | (32) |
|
2.1 Mapping Vectors and One-Forms, |
|
|
21 | (4) |
|
|
21 | (2) |
|
2.1.2 Double-Bar Product || |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.2 Mapping Multivectors and Multiforms |
|
|
25 | (7) |
|
|
25 | (1) |
|
2.2.2 Double-Wedge Product ^ |
|
|
25 | (3) |
|
2.2.3 Double-Wedge Powers ^ |
|
|
28 | (2) |
|
2.2.4 Double Contractions right floor apldownstyle ight floor apldownstyle and left floor apldownstyle left floor apldownstyle |
|
|
30 | (1) |
|
2.2.5 Natural Dot Product for Bidyadics |
|
|
31 | (1) |
|
|
32 | (7) |
|
2.3.1 Contraction Identities |
|
|
32 | (1) |
|
|
33 | (2) |
|
|
35 | (1) |
|
2.3.4 Cayley-Hamilton Equation |
|
|
36 | (1) |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (4) |
|
2.5.1 Eigenvectors and Eigen One-Forms |
|
|
41 | (1) |
|
2.5.2 Reduced Cayley-Hamilton Equations |
|
|
42 | (1) |
|
2.5.3 Construction of Eigenvectors |
|
|
43 | (2) |
|
|
45 | (4) |
|
|
46 | (1) |
|
2.6.2 Antisymmetric Dyadics |
|
|
47 | (1) |
|
2.6.3 Inverse Rules for Metric Dyadics |
|
|
48 | (1) |
|
|
49 | (4) |
3 Bidyadics |
|
53 | (26) |
|
3.1 Cayley-Hamilton Equation, |
|
|
54 | (4) |
|
3.1.1 Coefficient Functions |
|
|
55 | (2) |
|
3.1.2 Determinant of a Bidyadic |
|
|
57 | (1) |
|
3.1.3 Antisymmetric Bidyadic |
|
|
57 | (1) |
|
3.2 Bidyadic Eigenproblem, |
|
|
58 | (3) |
|
|
60 | (1) |
|
|
60 | (1) |
|
3.3 Hehl-Obukhov Decomposition, |
|
|
61 | (3) |
|
3.4 Example: Simple Antisymmetric Bidyadic, |
|
|
64 | (2) |
|
3.5 Inverse Rules for Bidyadics, |
|
|
66 | (8) |
|
|
67 | (3) |
|
|
70 | (3) |
|
|
73 | (1) |
|
|
74 | (5) |
4 Special Dyadics and Bidyadics |
|
79 | (22) |
|
4.1 Orthogonality Conditions, |
|
|
79 | (2) |
|
4.1.1 Orthogonality of Dyadics |
|
|
79 | (2) |
|
4.1.2 Orthogonality of Bidyadics |
|
|
81 | (1) |
|
4.2 Nilpotent Dyadics and Bidyadics, |
|
|
81 | (2) |
|
4.3 Projection Dyadics and Bidyadics, |
|
|
83 | (2) |
|
4.4 Unipotent Dyadics and Bidyadics, |
|
|
85 | (2) |
|
4.5 Almost-Complex Dyadics, |
|
|
87 | (4) |
|
4.5.1 Two-Dimensional AC Dyadics |
|
|
89 | (1) |
|
4.5.2 Four-Dimensional AC Dyadics |
|
|
89 | (2) |
|
4.6 Almost-Complex Bidyadics, |
|
|
91 | (2) |
|
4.7 Modified Closure Relation, |
|
|
93 | (5) |
|
4.7.1 Equivalent Conditions |
|
|
94 | (1) |
|
|
94 | (2) |
|
4.7.3 Testing the Two Solutions |
|
|
96 | (2) |
|
|
98 | (3) |
5 Electromagnetic Fields |
|
101 | (40) |
|
|
101 | (5) |
|
5.1.1 Differentiation Operator |
|
|
101 | (2) |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
106 | (4) |
|
|
106 | (1) |
|
|
107 | (1) |
|
5.2.3 Expansions of Medium Bidyadics |
|
|
107 | (2) |
|
5.2.4 Gibbsian Representation |
|
|
109 | (1) |
|
5.3 Basic Classes of Media, |
|
|
110 | (7) |
|
5.3.1 Hehl-Obukhov Decomposition |
|
|
110 | (2) |
|
|
112 | (2) |
|
5.3.3 Simple Principal Medium |
|
|
114 | (3) |
|
5.4 Interfaces and Boundaries, |
|
|
117 | (6) |
|
5.4.1 Interface Conditions |
|
|
117 | (2) |
|
5.4.2 Boundary Conditions |
|
|
119 | (4) |
|
|
123 | (5) |
|
5.5.1 Bilinear Invariants |
|
|
123 | (2) |
|
5.5.2 The Stress-Energy Dyadic |
|
|
125 | (2) |
|
5.5.3 Differentiation Rule |
|
|
127 | (1) |
|
|
128 | (8) |
|
|
128 | (2) |
|
5.6.2 Dispersion Equation |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
132 | (2) |
|
5.6.5 Simple Principal Medium |
|
|
134 | (1) |
|
5.6.6 Handedness of Plane Wave |
|
|
135 | (1) |
|
|
136 | (5) |
6 Transformation of Fields and Media |
|
141 | (28) |
|
6.1 Affine Transformation, |
|
|
141 | (4) |
|
6.1.1 Transformation of Fields |
|
|
141 | (1) |
|
6.1.2 Transformation of Media |
|
|
142 | (2) |
|
6.1.3 Dispersion Equation |
|
|
144 | (1) |
|
6.1.4 Simple Principal Medium |
|
|
145 | (1) |
|
6.2 Duality Transformation, |
|
|
145 | (5) |
|
6.2.1 Transformation of Fields |
|
|
146 | (1) |
|
6.2.2 Involutionary Duality Transformation |
|
|
147 | (2) |
|
6.2.3 Transformation of Media |
|
|
149 | (1) |
|
6.3 Transformation of Boundary Conditions, |
|
|
150 | (3) |
|
6.3.1 Simple Principal Medium |
|
|
152 | (1) |
|
|
152 | (1) |
|
6.4 Reciprocity Transformation, |
|
|
153 | (6) |
|
6.4.1 Medium Transformation |
|
|
153 | (2) |
|
6.4.2 Reciprocity Conditions |
|
|
155 | (2) |
|
|
157 | (1) |
|
6.4.4 Time-Harmonic Fields |
|
|
158 | (1) |
|
6.5 Conformal Transformation, |
|
|
159 | (7) |
|
6.5.1 Properties of the Conformal Transformation |
|
|
160 | (4) |
|
6.5.2 Field Transformation |
|
|
164 | (1) |
|
6.5.3 Medium Transformation |
|
|
165 | (1) |
|
|
166 | (3) |
7 Basic Classes of Electromagnetic Media |
|
169 | (28) |
|
|
169 | (9) |
|
7.1.1 Gibbsian Isotropic Medium |
|
|
169 | (1) |
|
7.1.2 Gibbsian Bi-isotropic Medium |
|
|
170 | (1) |
|
7.1.3 Decomposition of GBI Medium |
|
|
171 | (2) |
|
7.1.4 Affine Transformation |
|
|
173 | (1) |
|
7.1.5 Eigenfields in GBI Medium |
|
|
174 | (2) |
|
7.1.6 Plane Wave in GBI Medium |
|
|
176 | (2) |
|
|
178 | (4) |
|
7.2.1 Perfect Electromagnetic Conductor |
|
|
179 | (1) |
|
7.2.2 PEMC as Limiting Case of GBI Medium |
|
|
180 | (1) |
|
7.2.3 PEMC Boundary Problems |
|
|
181 | (1) |
|
|
182 | (10) |
|
7.3.1 Plane Wave in Skewon-Axion Medium |
|
|
184 | (1) |
|
7.3.2 Gibbsian Representation |
|
|
185 | (2) |
|
7.3.3 Boundary Conditions |
|
|
187 | (5) |
|
7.4 Extended Skewon-Axion Media, |
|
|
192 | (2) |
|
|
194 | (3) |
8 Quadratic Media |
|
197 | (28) |
|
|
197 | (3) |
|
|
200 | (1) |
|
|
201 | (4) |
|
8.3.1 Spatial Expansion of Q Media |
|
|
201 | (2) |
|
8.3.2 Spatial Expansion of P Media |
|
|
203 | (1) |
|
8.3.3 Relation Between P Media and Q Media |
|
|
204 | (1) |
|
|
205 | (4) |
|
8.4.1 Plane Waves in Q Media |
|
|
205 | (2) |
|
8.4.2 Plane Waves in P Media |
|
|
207 | (1) |
|
8.4.3 P Medium as Boundary Material |
|
|
208 | (1) |
|
8.5 P-Axion and Q-Axion Media, |
|
|
209 | (2) |
|
|
211 | (7) |
|
8.6.1 Gibbsian Representation |
|
|
211 | (3) |
|
8.6.2 Field Decomposition |
|
|
214 | (1) |
|
|
215 | (1) |
|
8.6.4 Plane Waves in Extended Q Media |
|
|
215 | (3) |
|
|
218 | (3) |
|
|
218 | (1) |
|
8.7.2 Plane Waves in Extended P Media |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (4) |
9 Media Defined by Bidyadic Equations |
|
225 | (24) |
|
|
226 | (9) |
|
|
227 | (1) |
|
|
228 | (1) |
|
9.1.3 Duality Transformation |
|
|
229 | (2) |
|
|
231 | (3) |
|
|
234 | (1) |
|
|
235 | (5) |
|
|
235 | (1) |
|
|
236 | (2) |
|
9.2.3 Examples of CU Media |
|
|
238 | (2) |
|
9.3 Bi-Quadratic Equation, |
|
|
240 | (6) |
|
|
241 | (1) |
|
|
242 | (2) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
246 | (3) |
10 Media Defined by Plane-Wave Properties |
|
249 | (24) |
|
10.1 Media with No Dispersion Equation (NDE Media), |
|
|
249 | (10) |
|
10.1.1 Two Cases of Solutions |
|
|
250 | (5) |
|
10.1.2 Plane-Wave Fields in NDE Media |
|
|
255 | (2) |
|
10.1.3 Other Possible NDE Media |
|
|
257 | (2) |
|
|
259 | (10) |
|
|
259 | (4) |
|
10.2.2 DC-Medium Subclasses |
|
|
263 | (4) |
|
10.2.3 Plane-Wave Properties |
|
|
267 | (2) |
|
|
269 | (4) |
Appendix A Solutions to Problems |
|
273 | (96) |
Appendix B Transformation to Gibbsian Formalism |
|
369 | (6) |
Appendix C Multivector and Dyadic Identities |
|
375 | (14) |
References |
|
389 | (6) |
Index |
|
395 | |