Atnaujinkite slapukų nuostatas

El. knyga: Multilevel Modeling Methods with Introductory and Advanced Applications

Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Multilevel Modeling Methods with Introductory and Advanced Applications provides a cogent and comprehensive introduction to the area of multilevel modeling for methodological and applied researchers as well as advanced graduate students. The book is designed to be able to serve as a textbook for a one or two semester course in multilevel modeling. The topics of the seventeen chapters range from basic to advanced, yet each chapter is designed to be able to stand alone as an instructional unit on its respective topic, with an emphasis on application and interpretation.

In addition to covering foundational topics on the use of multilevel models for organizational and longitudinal research, the book includes chapters on more advanced extensions and applications, such as cross-classified random effects models, non-linear growth models, mixed effects location scale models, logistic, ordinal, and Poisson models, and multilevel mediation. In addition, the volume includes chapters addressing some of the most important design and analytic issues including missing data, power analyses, causal inference, model fit, and measurement issues. Finally, the volume includes chapters addressing special topics such as using large-scale complex sample datasets, and reporting the results of multilevel designs.



"Multilevel Modeling Methods" introduces multilevel modeling for researchers and advanced students. It serves as a textbook for courses, covering topics from basic to advanced, including organizational and longitudinal research, advanced applications, design issues, and special topics like large-scale datasets and reporting results.

Acknowledgments 11
1 Introduction to Multilevel Modeling Methods: Pedagogy and Context
1(12)
Ann A. O'Connell
D. Betsy McCoach
Bethany A. Bell
SECTION I ORGANIZATIONAL DATA
2 Introduction to Multilevel Models for Organizational Data
13(38)
Bethany A. Bell
Jason A. Schoeneberger
3 Evaluation of Model Fit and Adequacy
51(44)
D. Betsy McCoach
Sarah D. Neivton
Anthony J. Gambino
4 Causal Inference in Multilevel Settings
95(32)
Chris Rhoads
Eva Yujia Li
5 Statistical Power for Linear Multilevel Models
127(38)
Jessaca Spybrook
Benjamin M. Kelcey
Nianbo Dong
6 Cross-Classified Random-Effects Models
165(44)
Audrey J. Leroux
S. Natasha Beretvas
7 Multilevel Logistic and Ordinal Models
209(46)
Ann A. O'Connell
Meng-Ting Lo
Jessica Goldstein
H. Jane Rogers
C.-Y. Joanne Peng
8 Single and Multilevel Models for Counts
255(52)
Ann A. O'Connell
Nivedita Bhaktha
Jing Zhang
SECTION II LONGITUDINAL DATA
9 Individual Growth Curve Models for Longitudinal Data
307(48)
D. Betsy McCoach
Bethany A. Bell
Aarti P. Bellara
10 Modeling Nonlinear Longitudinal Change With Mixed Effects Models
355(34)
Jeffrey R. Harring
Shelley A. Blozis
11 Within-Subject Residual Variance-Covariance Structures in Longitudinal Data Analysis
389(32)
Minjung Kim
Hsien-Yuan Hsu
Oi-man Kwok
12 Modeling Variation in Intensive Longitudinal Data
421(38)
Donald Hedeker
Robin J. Mermelstein
SECTION III DESIGN AND SPECIAL ISSUES
13 Using Large-Scale Complex Sample Datasets in Multilevel Modeling
459(36)
Laura M. Stapleton
Scott L. Thomas
14 Common Measurement Issues in a Multilevel Framework
495(40)
Brian F. French
W. Holmes Finch
Thao Vo
15 Missing Data Handling for Multilevel Data
535(32)
Craig K. Enders
Timothy Hayes
16 Multilevel Mediation Analysis
567(32)
Nicholas J. Rockwood
Andrew F. Hayes
17 Reporting Results of Multilevel Designs
599(24)
John M. Ferron
Yan Wang
Zhiyao Yi
Yue Yin
Eunsook Kim
Robert F. Dedrick
About the Contributors 623
Ann A. O'Connell, The Ohio State University

D. Betsy McCoach, University of Connecticut

Bethany A. Bell, University of Virginia