Atnaujinkite slapukų nuostatas

Multimedia-enabled Sensors in IoT: Data Delivery and Traffic Modelling [Kietas viršelis]

(Near East University, Turkey)
  • Formatas: Hardback, 300 pages, aukštis x plotis: 234x156 mm, weight: 750 g
  • Išleidimo metai: 30-Apr-2018
  • Leidėjas: CRC Press Inc
  • ISBN-10: 0815387113
  • ISBN-13: 9780815387114
  • Formatas: Hardback, 300 pages, aukštis x plotis: 234x156 mm, weight: 750 g
  • Išleidimo metai: 30-Apr-2018
  • Leidėjas: CRC Press Inc
  • ISBN-10: 0815387113
  • ISBN-13: 9780815387114

This book gives an overview of best effort data and real-time multipath routing protocols in WMSN. It provides results of recent research in design issues affecting the development of strategic multipath routing protocols that support multimedia data traffic in WMSN from an IoT perspective, plus detailed analysis on the appropriate traffic models.

Author xiii
1 Introduction
1(6)
1.1 Contributions
3(4)
1.1.1 Book Outline
3(1)
References
4(3)
2 A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
7(88)
2.1 Introduction
7(4)
2.2 Comparison with Related Survey Articles
11(10)
2.3 Routing System Architecture and Design Issues
21(8)
2.3.1 Hard and Soft Real-Time Operation and Best-Effort for Resource Constraints
21(1)
2.3.1.1 Hard Real-Time (HRT)
21(1)
2.3.1.2 Soft Real-Time (SRT)
21(1)
2.3.1.3 Best-Effort (BE)
21(1)
2.3.2 Energy Efficiency Model
22(1)
2.3.3 QoS Modeling Requirements
23(1)
2.3.3.1 Latencies
24(1)
2.3.3.2 Bandwidth
24(1)
2.3.4 Sensor Network
25(1)
2.3.5 Data Delivery Model
26(1)
2.3.5.1 Continuous Time-Driven Delivery Model
26(1)
2.3.5.2 Event-Driven and Query-Driven Models
26(1)
2.3.5.3 Hybrid Model
26(1)
2.3.6 Dynamic Network
26(1)
2.3.7 Reliability and Fault Tolerance
27(1)
2.3.7.1 Local Communication (Node-to-Node)
27(1)
2.3.7.2 Point-to-Point (Node-Node)
27(1)
2.3.7.3 Convergence (Node-to-Sink)
28(1)
2.3.7.4 Divergence (Sink-to-Node)
28(1)
2.3.8 Summary
29(1)
2.4 Routing Techniques in WMSNs Classification
29(4)
2.4.1 Designing Issues for Multipath Routing
30(1)
2.4.2 The Taxonomy of Multipath Routing Techniques
30(2)
2.4.3 Summary
32(1)
2.5 Multipath Routing Protocols: Challenges and Issues
33(8)
2.5.1 Multipath Discovery
34(1)
2.5.1.1 Partially Disjoint Paths
35(1)
2.5.1.2 Braided Multipath
35(1)
2.5.1.3 Disjoint Paths
36(2)
2.5.2 Multipath Forwarding Models
38(1)
2.5.2.1 Path Selection
38(1)
2.5.2.2 Distribution Traffics Splitting Pattern
39(1)
2.5.3 Maintenance of Paths
40(1)
2.5.4 Summary
41(1)
2.6 Concurrent Multipath Unicast Forwarding
41(20)
2.6.1 Multipath Multi-QoS Constraints for Efficient Resource Allocation
41(1)
2.6.1.1 Principal Protocols of Multipath Multi-QoS Constraints
42(5)
2.6.1.2 Discussion
47(1)
2.6.2 Multipath Reliability Constraint for Reliable Data Transmission
48(5)
2.6.2.1 Principal Protocols for Multipath Reliability Constraint
53(7)
2.6.2.2 Discussion
60(1)
2.7 Alternative Multipath Broadcast Flooding
61(12)
2.7.1 Data-Centric Protocol Operation
65(1)
2.7.2 Data-Centric Protocol Problem
65(1)
2.7.2.1 Principal Protocols
65(2)
2.7.2.2 Discussion
67(1)
2.7.3 On-Demand Fashion
68(1)
2.7.3.1 DSR Principal Protocols
69(1)
2.7.3.2 AODV Principal Protocols
70(1)
2.7.3.3 Proactive Routing
70(1)
2.7.4 Discussion
71(2)
2.8 Simulation Comparisons
73(3)
2.9 Open Research Problems
76(8)
2.9.1 Data Sensing and Delivery Model
76(5)
2.9.2 Node Deployment
81(1)
2.9.3 Node Capabilities
81(1)
2.9.4 Link Quality Estimators (LQEs)
81(1)
2.9.5 Mobility
82(1)
2.9.6 Scalability
82(1)
2.9.7 Multimedia Content
82(1)
2.9.8 Energy Efficiency Considerations
83(1)
2.9.9 Multi-Constrained QoS Guarantee
83(1)
2.9.10 Cognitive Radio (CR)
83(1)
2.10 Conclusion
84(11)
Acknowledgments
84(1)
References
84(11)
3 Optimized Multi-Constrained Quality-of-Service Multipath Routing Approach for Multimedia Sensor Networks
95(32)
3.1 Introduction
95(2)
3.2 Related Works
97(1)
3.3 Partitioning Multi-Constrained Multipath Routing (PMMR) Protocol
97(8)
3.3.1 Problem Formulation
98(1)
3.3.2 Link Quality Modeling
98(5)
3.3.3 Neighboring Node-Disjointed Discovery Procedure
103(1)
3.3.4 Path-Disjointed Discovery Procedure
104(1)
3.3.5 Path-Disjointed Selection Procedure
104(1)
3.4 Multi-Constraints QoS Parameters Modeling
105(5)
3.4.1 Power-Consumption Modeling
106(2)
3.4.2 Delay-Constraint Modeling
108(2)
3.5 Performance Evaluation
110(13)
3.5.1 Experiment 1: Effectiveness of Cut-off Determination
111(4)
3.5.2 Experiment 2: Comparison against Three Routing Algorithms
115(8)
3.6 Conclusions
123(4)
References
123(4)
4 Green Data Delivery Framework for Safety-Inspired Multimedia in Mobile IoT
127(26)
4.1 Introduction
127(2)
4.2 Related Work
129(6)
4.2.1 Multipath Unicast Forwarding
130(1)
4.2.1.1 Multipath QoS-Based Protocols
130(1)
4.2.1.2 Reliability Constraints
131(1)
4.2.2 Alternative Multipath Broadcasting
132(1)
4.2.2.1 Data-Centric Approaches
132(1)
4.2.2.2 On-Demand Approaches
133(2)
4.3 System Model
135(3)
4.3.1 Network Architecture
135(1)
4.3.2 Lifetime and Energy Model
136(1)
4.3.3 Communication Model
137(1)
4.4 Multipath Disruption-Tolerant Approach (MDTA)
138(3)
4.5 Theoretical Analysis on Lifetime
141(2)
4.6 Performance Evaluation
143(8)
4.6.1 Performance Metrics and Parameters
143(1)
4.6.2 Simulation Setup
144(1)
4.6.3 Simulation Results
145(6)
4.7 Conclusions
151(2)
References
151(2)
5 A Delay-Tolerant Framework for Integrated RSNs in IoT
153(34)
5.1 Introduction
153(3)
5.2 Related Work
156(7)
5.2.1 Architectures for Integrated RSNs
156(4)
5.2.2 Node Placement in Integrated Architectures
160(2)
5.2.3 Data Transfer in DTNs
162(1)
5.3 System Models
163(4)
5.3.1 Network Model
163(2)
5.3.2 Delay Model
165(1)
5.3.3 Communication Model
166(1)
5.4 Integrated RSN Framework
167(9)
5.4.1 Optimal Placement of Super Nodes
169(3)
5.4.2 CN Selection
172(4)
5.5 Discussion and Results
176(7)
5.5.1 Simulation Model
177(1)
5.5.2 Simulation Results
177(6)
5.6 Conclusion
183(4)
Acknowledgments
184(1)
References
184(3)
6 Multimedia-Enabled WSNs Using UAVs for Safety-Oriented Mobile IoT
187(14)
6.1 Introduction
187(2)
6.2 Related Work
189(1)
6.3 System Model
190(3)
6.3.1 Problem Formulation
191(1)
6.3.2 Energy Model
191(1)
6.3.3 Delay Model
192(1)
6.3.4 Throughput Model
193(1)
6.4 Particle Swarm Optimization (PSO) Algorithm
193(3)
6.5 Performance Evaluation
196(3)
6.5.1 Simulation Results
196(3)
6.6 Conclusion
199(2)
References
199(2)
7 Evaluation of a Duty-Cycled Asynchronous X-MAC Protocol for VSNs
201(30)
7.1 Introduction
201(2)
7.2 Related Works
203(3)
7.3 Overview of the X-MAC Protocol
206(1)
7.4 Markov Model of X-MAC
207(9)
7.4.1 The Hidden-Problem Formulation
212(2)
7.4.2 Media Access Rules of X-MAC
214(2)
7.5 QoS Parameters Analysis of the X-MAC Protocol
216(4)
7.6 Simulation Results
220(7)
7.6.1 Varying the Cycle Length
221(3)
7.6.2 Varying the Number of Nodes
224(2)
7.6.3 Discussion
226(1)
7.7 Conclusion
227(1)
7.8 Competing Interests
227(1)
7.9 Funding
227(1)
7.10 Authors Contributions
228(3)
Acknowledgments
228(1)
References
228(3)
8 Mobile Traffic Modeling for Wireless Multimedia Sensor Networks in IoT
231(18)
8.1 Introduction
231(2)
8.2 Related Work
233(2)
8.3 QoS-Based Multimedia Traffic Modeling Framework
235(5)
8.3.1 Analysis of Retransmission Channel Access Schemes
235(1)
8.3.2 Modeling Duty-Cycle Node Operations
235(3)
8.3.3 Energy and Delay Modeling
238(1)
8.3.4 Throughput Modeling
239(1)
8.3.5 Path Loss Model
239(1)
8.3.6 Failure Modeling
240(1)
8.3.6.1 Coverage Factor
240(1)
8.3.6.2 Sensor Failure Rate
240(1)
8.4 Use-Case Transmission Modeling
240(2)
8.5 Performance Evaluation
242(3)
8.5.1 Simulation Results
243(1)
8.5.1.1 The Impact of Radio Irregularity on Energy Consumption
243(1)
8.5.1.2 The Impact of Radio Irregularity on Average Delay
244(1)
8.6 Concluding Remarks
245(4)
References
246(3)
9 Information-Centric Framework for the IoT: Traffic Modeling and Optimization
249(32)
9.1 Introduction
249(3)
9.2 Related Work
252(1)
9.3 System Models
253(6)
9.3.1 Network Model
253(1)
9.3.2 Delay and Disruption Model
254(2)
9.3.3 Traffic Representation Model
256(2)
9.3.4 Problem Statement
258(1)
9.4 CDE-Based Framework
259(5)
9.5 Real Scenarios and Case Studies
264(3)
9.6 Simulation Results and Discussions
267(10)
9.7 Conclusion
277(4)
References
278(3)
10 Conclusions and Future Directions
281(6)
10.1 Summary of the Book
281(6)
10.1.1 Future Directions
284(3)
Index 287
Dr. Fadi Al-Turjman is a visiting faculty at METU University in North Cyprus. He is working in the area of wireless networks architectures, deployments, and performance evaluation. Dr. Al-Turjman obtained his Ph.D. in Computer Science from Queens University in 2011. He received both his B.Eng. (Honors) and M.Eng. (Honors) degrees in Computer Engineering from Kuwait University in 2004 and 2007, respectively. From 2004 to 2007, he was a researcher and lecturer at the departments of Information Science and Computer Engineering at Kuwait University, Kuwait. During this period, he worked on digital systems and wireless sensor networks. From 2007 to 2013, he was a research and teaching associate at Queens University, Canada. From 2013 to 2015, he worked as an assistant professor at the University of Guelph, Canada and Akdeniz University, Turkey. He has received recognition and best paper awards at top international venues, including IEEE ICC, LCN, GLOBECOM, and IWCMC conferences. He has authored or co-authored more than 100 reputable journals and international conference papers, in addition to two patents in his research area.