Author |
|
xiii | |
|
|
1 | (6) |
|
|
3 | (4) |
|
|
3 | (1) |
|
|
4 | (3) |
|
2 A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks |
|
|
7 | (88) |
|
|
7 | (4) |
|
2.2 Comparison with Related Survey Articles |
|
|
11 | (10) |
|
2.3 Routing System Architecture and Design Issues |
|
|
21 | (8) |
|
2.3.1 Hard and Soft Real-Time Operation and Best-Effort for Resource Constraints |
|
|
21 | (1) |
|
2.3.1.1 Hard Real-Time (HRT) |
|
|
21 | (1) |
|
2.3.1.2 Soft Real-Time (SRT) |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.3.2 Energy Efficiency Model |
|
|
22 | (1) |
|
2.3.3 QoS Modeling Requirements |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.3.5 Data Delivery Model |
|
|
26 | (1) |
|
2.3.5.1 Continuous Time-Driven Delivery Model |
|
|
26 | (1) |
|
2.3.5.2 Event-Driven and Query-Driven Models |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.3.7 Reliability and Fault Tolerance |
|
|
27 | (1) |
|
2.3.7.1 Local Communication (Node-to-Node) |
|
|
27 | (1) |
|
2.3.7.2 Point-to-Point (Node-Node) |
|
|
27 | (1) |
|
2.3.7.3 Convergence (Node-to-Sink) |
|
|
28 | (1) |
|
2.3.7.4 Divergence (Sink-to-Node) |
|
|
28 | (1) |
|
|
29 | (1) |
|
2.4 Routing Techniques in WMSNs Classification |
|
|
29 | (4) |
|
2.4.1 Designing Issues for Multipath Routing |
|
|
30 | (1) |
|
2.4.2 The Taxonomy of Multipath Routing Techniques |
|
|
30 | (2) |
|
|
32 | (1) |
|
2.5 Multipath Routing Protocols: Challenges and Issues |
|
|
33 | (8) |
|
2.5.1 Multipath Discovery |
|
|
34 | (1) |
|
2.5.1.1 Partially Disjoint Paths |
|
|
35 | (1) |
|
2.5.1.2 Braided Multipath |
|
|
35 | (1) |
|
|
36 | (2) |
|
2.5.2 Multipath Forwarding Models |
|
|
38 | (1) |
|
|
38 | (1) |
|
2.5.2.2 Distribution Traffics Splitting Pattern |
|
|
39 | (1) |
|
2.5.3 Maintenance of Paths |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.6 Concurrent Multipath Unicast Forwarding |
|
|
41 | (20) |
|
2.6.1 Multipath Multi-QoS Constraints for Efficient Resource Allocation |
|
|
41 | (1) |
|
2.6.1.1 Principal Protocols of Multipath Multi-QoS Constraints |
|
|
42 | (5) |
|
|
47 | (1) |
|
2.6.2 Multipath Reliability Constraint for Reliable Data Transmission |
|
|
48 | (5) |
|
2.6.2.1 Principal Protocols for Multipath Reliability Constraint |
|
|
53 | (7) |
|
|
60 | (1) |
|
2.7 Alternative Multipath Broadcast Flooding |
|
|
61 | (12) |
|
2.7.1 Data-Centric Protocol Operation |
|
|
65 | (1) |
|
2.7.2 Data-Centric Protocol Problem |
|
|
65 | (1) |
|
2.7.2.1 Principal Protocols |
|
|
65 | (2) |
|
|
67 | (1) |
|
|
68 | (1) |
|
2.7.3.1 DSR Principal Protocols |
|
|
69 | (1) |
|
2.7.3.2 AODV Principal Protocols |
|
|
70 | (1) |
|
2.7.3.3 Proactive Routing |
|
|
70 | (1) |
|
|
71 | (2) |
|
2.8 Simulation Comparisons |
|
|
73 | (3) |
|
2.9 Open Research Problems |
|
|
76 | (8) |
|
2.9.1 Data Sensing and Delivery Model |
|
|
76 | (5) |
|
|
81 | (1) |
|
|
81 | (1) |
|
2.9.4 Link Quality Estimators (LQEs) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
2.9.8 Energy Efficiency Considerations |
|
|
83 | (1) |
|
2.9.9 Multi-Constrained QoS Guarantee |
|
|
83 | (1) |
|
2.9.10 Cognitive Radio (CR) |
|
|
83 | (1) |
|
|
84 | (11) |
|
|
84 | (1) |
|
|
84 | (11) |
|
3 Optimized Multi-Constrained Quality-of-Service Multipath Routing Approach for Multimedia Sensor Networks |
|
|
95 | (32) |
|
|
95 | (2) |
|
|
97 | (1) |
|
3.3 Partitioning Multi-Constrained Multipath Routing (PMMR) Protocol |
|
|
97 | (8) |
|
3.3.1 Problem Formulation |
|
|
98 | (1) |
|
3.3.2 Link Quality Modeling |
|
|
98 | (5) |
|
3.3.3 Neighboring Node-Disjointed Discovery Procedure |
|
|
103 | (1) |
|
3.3.4 Path-Disjointed Discovery Procedure |
|
|
104 | (1) |
|
3.3.5 Path-Disjointed Selection Procedure |
|
|
104 | (1) |
|
3.4 Multi-Constraints QoS Parameters Modeling |
|
|
105 | (5) |
|
3.4.1 Power-Consumption Modeling |
|
|
106 | (2) |
|
3.4.2 Delay-Constraint Modeling |
|
|
108 | (2) |
|
3.5 Performance Evaluation |
|
|
110 | (13) |
|
3.5.1 Experiment 1: Effectiveness of Cut-off Determination |
|
|
111 | (4) |
|
3.5.2 Experiment 2: Comparison against Three Routing Algorithms |
|
|
115 | (8) |
|
|
123 | (4) |
|
|
123 | (4) |
|
4 Green Data Delivery Framework for Safety-Inspired Multimedia in Mobile IoT |
|
|
127 | (26) |
|
|
127 | (2) |
|
|
129 | (6) |
|
4.2.1 Multipath Unicast Forwarding |
|
|
130 | (1) |
|
4.2.1.1 Multipath QoS-Based Protocols |
|
|
130 | (1) |
|
4.2.1.2 Reliability Constraints |
|
|
131 | (1) |
|
4.2.2 Alternative Multipath Broadcasting |
|
|
132 | (1) |
|
4.2.2.1 Data-Centric Approaches |
|
|
132 | (1) |
|
4.2.2.2 On-Demand Approaches |
|
|
133 | (2) |
|
|
135 | (3) |
|
4.3.1 Network Architecture |
|
|
135 | (1) |
|
4.3.2 Lifetime and Energy Model |
|
|
136 | (1) |
|
4.3.3 Communication Model |
|
|
137 | (1) |
|
4.4 Multipath Disruption-Tolerant Approach (MDTA) |
|
|
138 | (3) |
|
4.5 Theoretical Analysis on Lifetime |
|
|
141 | (2) |
|
4.6 Performance Evaluation |
|
|
143 | (8) |
|
4.6.1 Performance Metrics and Parameters |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (6) |
|
|
151 | (2) |
|
|
151 | (2) |
|
5 A Delay-Tolerant Framework for Integrated RSNs in IoT |
|
|
153 | (34) |
|
|
153 | (3) |
|
|
156 | (7) |
|
5.2.1 Architectures for Integrated RSNs |
|
|
156 | (4) |
|
5.2.2 Node Placement in Integrated Architectures |
|
|
160 | (2) |
|
5.2.3 Data Transfer in DTNs |
|
|
162 | (1) |
|
|
163 | (4) |
|
|
163 | (2) |
|
|
165 | (1) |
|
5.3.3 Communication Model |
|
|
166 | (1) |
|
5.4 Integrated RSN Framework |
|
|
167 | (9) |
|
5.4.1 Optimal Placement of Super Nodes |
|
|
169 | (3) |
|
|
172 | (4) |
|
5.5 Discussion and Results |
|
|
176 | (7) |
|
|
177 | (1) |
|
|
177 | (6) |
|
|
183 | (4) |
|
|
184 | (1) |
|
|
184 | (3) |
|
6 Multimedia-Enabled WSNs Using UAVs for Safety-Oriented Mobile IoT |
|
|
187 | (14) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (3) |
|
6.3.1 Problem Formulation |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
6.4 Particle Swarm Optimization (PSO) Algorithm |
|
|
193 | (3) |
|
6.5 Performance Evaluation |
|
|
196 | (3) |
|
|
196 | (3) |
|
|
199 | (2) |
|
|
199 | (2) |
|
7 Evaluation of a Duty-Cycled Asynchronous X-MAC Protocol for VSNs |
|
|
201 | (30) |
|
|
201 | (2) |
|
|
203 | (3) |
|
7.3 Overview of the X-MAC Protocol |
|
|
206 | (1) |
|
7.4 Markov Model of X-MAC |
|
|
207 | (9) |
|
7.4.1 The Hidden-Problem Formulation |
|
|
212 | (2) |
|
7.4.2 Media Access Rules of X-MAC |
|
|
214 | (2) |
|
7.5 QoS Parameters Analysis of the X-MAC Protocol |
|
|
216 | (4) |
|
|
220 | (7) |
|
7.6.1 Varying the Cycle Length |
|
|
221 | (3) |
|
7.6.2 Varying the Number of Nodes |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
7.10 Authors Contributions |
|
|
228 | (3) |
|
|
228 | (1) |
|
|
228 | (3) |
|
8 Mobile Traffic Modeling for Wireless Multimedia Sensor Networks in IoT |
|
|
231 | (18) |
|
|
231 | (2) |
|
|
233 | (2) |
|
8.3 QoS-Based Multimedia Traffic Modeling Framework |
|
|
235 | (5) |
|
8.3.1 Analysis of Retransmission Channel Access Schemes |
|
|
235 | (1) |
|
8.3.2 Modeling Duty-Cycle Node Operations |
|
|
235 | (3) |
|
8.3.3 Energy and Delay Modeling |
|
|
238 | (1) |
|
8.3.4 Throughput Modeling |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
8.3.6.2 Sensor Failure Rate |
|
|
240 | (1) |
|
8.4 Use-Case Transmission Modeling |
|
|
240 | (2) |
|
8.5 Performance Evaluation |
|
|
242 | (3) |
|
|
243 | (1) |
|
8.5.1.1 The Impact of Radio Irregularity on Energy Consumption |
|
|
243 | (1) |
|
8.5.1.2 The Impact of Radio Irregularity on Average Delay |
|
|
244 | (1) |
|
|
245 | (4) |
|
|
246 | (3) |
|
9 Information-Centric Framework for the IoT: Traffic Modeling and Optimization |
|
|
249 | (32) |
|
|
249 | (3) |
|
|
252 | (1) |
|
|
253 | (6) |
|
|
253 | (1) |
|
9.3.2 Delay and Disruption Model |
|
|
254 | (2) |
|
9.3.3 Traffic Representation Model |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (5) |
|
9.5 Real Scenarios and Case Studies |
|
|
264 | (3) |
|
9.6 Simulation Results and Discussions |
|
|
267 | (10) |
|
|
277 | (4) |
|
|
278 | (3) |
|
10 Conclusions and Future Directions |
|
|
281 | (6) |
|
|
281 | (6) |
|
|
284 | (3) |
Index |
|
287 | |