Atnaujinkite slapukų nuostatas

El. knyga: Multimodal Learning for Clinical Decision Support: 11th International Workshop, ML-CDS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed joint proceedings of the 11th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2021, held in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in October 2021. The workshop was held virtually due to the COVID-19 pandemic.

The 10 full papers presented at ML-CDS 2021 were carefully reviewed and selected from numerous submissions. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning.

From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data.- Multi-Scale Hybrid Transformer Networks: Application to Prostate Disease Classification.- Predicting Treatment Response in Prostate Cancer Patients Based on Multimodal PET/CT for Clinical Decision Support.- A Federated Multigraph Integration Approach for Connectional Brain Template Learning.- SAMA: Spatially-Aware Multimodal Network with Attention for Early Lung Cancer Diagnosis.- Fully Automatic Head and Neck Cancer Prognosis Prediction in PET/CT.- Feature Selection for Privileged Modalities in Disease Classification.- Merging and Annotating Teeth and Roots from Automated Segmentation of Multimodal Images.- Structure and Feature based Graph U-Net for Early Alzheimer's Disease Prediction.- A Method for Predicting Alzheimer's Disease based on the Fusion of Single Nucleotide Polymorphisms and Magnetic Resonance Feature Extraction.