Atnaujinkite slapukų nuostatas

El. knyga: Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures: 10th International Workshop, ML-CDS 2020, and 9th International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 12445
  • Išleidimo metai: 03-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030609467
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 12445
  • Išleidimo metai: 03-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030609467

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed joint proceedings of the 10th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2020, and the 9th International Workshop on Clinical Image-Based Procedures, CLIP 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic.

The 4 full papers presented at ML-CDS 2020 and the 9 full papers presented at CLIP 2020 were carefully reviewed and selected from numerous submissions to ML-CDS and 10 submissions to CLIP. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. The CLIP workshops provides a forum for work centered on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.

CLIP 2020.- Optimal Targeting Visualizations for Surgical Navigation of
Iliosacral Screws.- Prediction of Type II Diabetes Onset with Computed
Tomography and Electronic Medical Records.- A Radiomics-based Machine
Learning Approach to Assess Collateral Circulation in Stroke on Non-contrast
Computed Tomography.- Image-based Subthalamic Nucleus Segmentation for Deep
Brain Surgery With Electrophysiology Aided Refinement.- 3D Slicer
Craniomaxillofacial Modules Support Patient-specific Decision-making for
Personalized Healthcare in Dental Research.- Learning Representations of
Endoscopic Videos to Detect Tool Presence Without Supervision.- Single-shot
Deep Volumetric Regression for Mobile Medical Augmented Reality.- A Baseline
Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge.-
Adversarial Prediction of Radiotherapy Treatment Machine Parameters.- ML-CDS
2020.- Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data.-
Towards Automated Diagnosis with Attentive Multi-Modal Learning Using
Electronic Health Records and Chest X-rays.- LUCAS: LUng CAncer Screening
with Multimodal Biomarkers.- Automatic Breast Lesion Classification by Joint
Neural Analysis of Mammography and Ultrasound.