Atnaujinkite slapukų nuostatas

El. knyga: Multiphase Flows for Process Industries - Fundamentals and Applications: Fundamentals and Applications 2 Volume Set 2 Volumes [Wiley Online]

Edited by , Edited by
  • Formatas: 704 pages
  • Išleidimo metai: 27-Apr-2022
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527812067
  • ISBN-13: 9783527812066
  • Wiley Online
  • Kaina: 301,33 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 704 pages
  • Išleidimo metai: 27-Apr-2022
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527812067
  • ISBN-13: 9783527812066

Discover the cutting-edge in multiphase flows used in the process industries 

In Multiphase Flows for Process Industries: Fundamentals and Applications, a team of accomplished chemical engineers delivers an insightful and complete treatment of the state-of-the-art in commonly encountered multiphase flows in the process industries. After discussing the theoretical background, experimental methods, and computational methods applicable to multiphase flows, the authors explore specific examples from the process industries. 

The book covers a wide range of multiphase flows, including gas-solid fluidized beds and flows with phase change. It also provides direction on how to use current advances in the field to realize efficient and optimized processes.  

Filling the gap between theory and practice, this unique reference also includes: 

  • A thorough introduction to multiphase flows and the process industry 
  • Practical discussions of flow regimes, lower order models and correlations, and the chronological development of mathematical models for multiphase flows 
  • Comprehensive explorations of experimental methods for characterizing multiphase flows, including flow imaging and visualization 
  • In-depth examinations of computational models for simulating multiphase flows  

Perfect for chemical and process engineers, Multiphase Flows for Process Industries: Fundamentals and Applications is required reading for graduate and doctoral students in the engineering sciences, as well as professionals in the chemical industry. 

Volume 1
Preface
xi
Part I Introduction
1(22)
1 Multiphase Flows and Process Industries
3(20)
Vivek V. Ranade
Ranjeet P. Utikar
1.1 The Process Industry
4(5)
1.2 Multiphase Flows
9(6)
1.3 Organization of This Book
15(4)
References
19(4)
Part II Fundamentals of Multiphase Flows
23(218)
2 Multiphase Flows: Flow Regimes, Lower Order Models, and Correlations
25(70)
Jyeshtharaj B. Joshi
Mukesh Kumar
2.1 Introduction
25(3)
2.2 Modeling of Multiphase Flows
28(1)
2.3 Chronological Development of Mathematical Models
29(2)
2.4 Zero-Dimensional Two-Equation Model
31(1)
2.5 Homogeneous Equilibrium Model
31(2)
2.6 Drift Flux Model
33(3)
2.7 One-Dimensional Five-Equation Models
36(1)
2.8 One-Dimensional Six-Equation Two-Phase Flow Models: Axial Variation of Field Variables
36(1)
2.8.1 Mathematical Formulations
36(1)
2.8.2 Closure
38(1)
2.8.2.1 Regime Maps and Criteria for Transition
38(1)
2.8.2.2 Momentum Closure
38(1)
2.8.2.3 Energy Closure
41(2)
2.8.3 Software (RELAP5)
43(1)
2.8.4 Application and Validation of Various One-D Models and CFD
46(1)
2.8.4.1 Nodalization for the One-Dimensional Models
47(1)
2.8.4.2 Model Details
47(1)
2.8.4.3 Comparison Between Three-, Five-, and Six-Equation Model with Experimental Data
48(1)
2.9 One-Dimensional Six-Equation Two-Phase Flow Models: Radial Variation of Field Variables
49(1)
2.9.1 Hydrodynamic Regimes and Criteria for Transition
49(1)
2.9.2 Mathematical Model
53(1)
2.9.3 Stepwise Solution Procedure
62(1)
2.9.3.1 Model Equation
64(1)
2.9.3.2 Model for Eddy Diffusivity
64(1)
2.9.3.3 Solution Procedure
65(1)
2.10 Prediction of Design Parameters Using One-Dimensional Models
66(1)
2.10.1 Pressure Drop
66(1)
2.10.2 Prediction of Heat Transfer Coefficient
73(1)
2.10.3 Mixing Time and Liquid Phase Dispersion Coefficient
75(2)
2.11 Process Design Using One-Dimensional Models
77(2)
2.12 The Three-Dimensional CFD Simulations to Overcome the Limitations of One-Dimensional Models: The Current Status
79(1)
Nomenclature
80(6)
Greek Letters
86(2)
References
88(7)
3 Multiscale Modeling of Multiphase Rows
95(108)
Kay A. Buist
Maike W. Baltussen
E.A.J.F. Peters
J.A.M. Kuipers
3.1 General Introduction to Multiphase Flows
95(1)
3.2 Multiscale Modeling of Multiphase Flows
96(2)
3.3 Euler-Euler Modeling
98(1)
3.3.1 Introduction
98(1)
3.3.2 Governing Equations
103(1)
3.3.3 Numerical Solution Method
106(1)
3.3.4 Results
107(1)
3.3.4.1 Hydrodynamics of a Pseudo Two-Dimensional Gas-Fluidized Bed
108(1)
3.3.4.2 Hydrodynamics of a 3D Cylindrical Bed
109(1)
3.3.4.3 Gas-Fluidized Bed with Heat Production
113(2)
3.3.5 Conclusions and Outlook
115(1)
3.4 Euler-Lagrange Modeling
116(1)
3.4.1 Introduction
116(1)
3.4.2 Discrete Particle Modeling
117(1)
3.4.2.1 Soft Sphere
117(1)
3.4.2.2 Hard Sphere
120(1)
3.4.2.3 Fluid-Particle Coupling
121(3)
3.4.3 Discrete Bubble Model
124(1)
3.4.3.1 Collision, Coalescence, and Break-up
124(3)
3.4.4 Direct Simulation Monte Carlo
127(1)
3.4.5 Conclusions and Outlook
131(2)
3.5 Immersed Boundary Methods
133(1)
3.5.1 Introduction
133(1)
3.5.2 Methods
134(1)
3.5.2.1 Governing Equations
134(1)
3.5.2.2 Continuous Forcing or Diffuse IBM
135(1)
3.5.2.3 Discrete Forcing or Sharp IBM
140(1)
3.5.2.4 Mass and Heat Transport
146(3)
3.5.3 Recent Results
149(1)
3.5.3.1 Hydrodynamics Using Diffuse IBM
149(1)
3.5.3.2 Hydrodynamics Using Sharp IBM
151(1)
3.5.3.3 Heat and Mass Transport Using Diffuse IBM
154(1)
3.5.3.4 Heat and Mass Transport Using Sharp IBM
154(5)
3.5.4 Discussion and Outlook
159(2)
3.6 Direct Numerical Simulations of Gas-Liquid and Gas-Liquid-Solid Flows
161(1)
3.6.1 Introduction
161(1)
3.6.2 Governing Equations
162(1)
3.6.3 Moving Grid Methods
163(1)
3.6.4 Fixed Grid Methods
163(1)
3.6.4.1 Volume of Fluid Method
164(1)
3.6.4.2 Level-Set Method
168(1)
3.6.4.3 Front Tracking
170(3)
3.6.5 Results
173(1)
3.6.5.1 Verification
173(1)
3.6.5.2 Validation
175(1)
3.6.5.3 Drag Coefficient of Bubble Swarms
176(1)
3.6.5.4 Droplet-Droplet Interactions
179(2)
3.6.6 Gas-Liquid-Solid Three Phase Flows
181(1)
3.6.7 Discussion and Outlook
184(1)
3.7 Verification, Experimental Validation, and Uncertainty Quantification
185(1)
Acknowledgments
186(1)
Symbols and Abbreviations
186(3)
References
189(14)
4 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Liquid and Gas-Liquid-Solid Processes
203(38)
Gopal Manoharan Karthik
Vivek V. Buwa
4.1 Introduction
203(5)
4.2 "Tools" for Process Innovation of Gas-Liquid and Gas-Liquid-Solid Processes
208(3)
4.3 Process Innovations in Multiphase Reactors
211(1)
4.3.1 Stirred Tank Reactors
212(1)
4.3.2 Bubble Column and Slurry Bubble Column Reactors
215(1)
4.3.3 Spinning Disc Reactors
218(1)
4.3.4 Oscillatory Baffled Reactors
220(1)
4.3.5 Cavitation Reactors
223(1)
4.3.5.1 Ultrasound Cavitation Reactors
223(1)
4.3.5.2 Hydrodynamic Cavitation Reactor
224(1)
4.3.6 Monolith Reactors
225(1)
4.3.7 Microreactors
227(1)
4.4 Process Innovations in Multiphase Unit Operations
228(1)
4.4.1 Mixing in Multiphase Systems
228(1)
4.4.2 Multiphase Separation
230(1)
4.4.2.1 HiGee Distillation
231(1)
4.4.2.2 Cyclic Distillation
232(1)
4.5 Summary
233(1)
Acknowledgments
234(1)
List of Abbreviations
234(1)
References
235(6)
Volume 2
Preface
xiii
Part III Enabling Process Innovations via Mastering Multiphase Flows
241(392)
5 Liquid-Liquid Processes: Mass Transfer Processes and Chemical Reactions
243(46)
Norbert Kockmann
David W. Agar
5.1 Overview
243(4)
5.2 Liquid-Liquid Thermodynamics and Processes
247(1)
5.2.1 Ternary Systems and Triangle Diagrams
247(1)
5.2.2 Single-Step Extraction
248(1)
5.2.3 Cross-Flow Extraction
248(1)
5.2.4 Counter-current Extraction
249(1)
5.2.5 Solvent Selection Criteria
251(1)
5.3 Mass Transfer in Liquid-Liquid Systems
252(1)
5.3.1 Interface of Droplets
252(1)
5.3.2 Numerical Simulation of Droplet Flow
254(1)
5.3.3 Modeling of Mass Transfer
255(1)
5.3.4 Extraction Processes
258(3)
5.4 Liquid-Liquid Reactions and Applications
261(1)
5.4.1 Mass Transfer and Chemical Reaction at the Liquid-Liquid Interface
261(1)
5.4.2 Interfacial Area and Specific Surface
265(1)
5.4.3 Turbulent Mixing and Dispersion
267(1)
5.4.4 Scale-Up Considerations
269(1)
5.5 Liquid-Liquid Process Equipment and Typical Applications
270(1)
5.5.1 Overview of Liquid-Liquid Extraction Equipment
271(1)
5.5.2 Liquid-Liquid Extraction Columns
272(1)
5.5.3 Centrifugal Extractors
274(1)
5.5.4 Applications of Reactive Extraction
275(1)
5.5.5 Chemical Reactors for Liquid-Liquid Processes
276(1)
5.5.6 Future Development in Liquid-Liquid Process Equipment and Applications
280(1)
5.6 Conclusion
281(1)
References
282(7)
6 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Solid Processes
289(70)
Milinkumar T. Shah
Ranjeet P. Utikar
Vishnu K. Pareek
6.1 Introduction
289(1)
6.2 Process Equipment
290(2)
6.3 Gas-Solid Flow Investigation Methods
292(2)
6.4 Case Study 1: FCC Riser
294(1)
6.4.1 Introduction
294(1)
6.4.2 Challenge in CFD Modeling of Gas-Solid Flow in Riser
297(1)
6.4.3 EMMS Approach
298(1)
6.4.4 Verification of EMMS Drag Model
301(1)
6.4.5 Calculation of EMMS Drag
305(1)
6.4.6 CFD of Cold-Flow FCC Riser
306(1)
6.4.7 CFD of Reactive Flow in FCC Riser
308(1)
6.4.7.1 Effect of Baffles
310(1)
6.4.7.2 Effect of Pulsating Flow
315(2)
6.4.8 Conclusion
317(1)
6.5 Case Study 2: FCC Stripper
317(1)
6.5.1 Introduction
317(1)
6.5.2 Experiments
318(1)
6.5.3 CFD Modeling
318(1)
6.5.4 Results and Discussion
320(1)
6.5.4.1 Experimental Data and Model Validation
320(1)
6.5.4.2 Effect of Packing
321(4)
6.5.5 Conclusion
325(1)
6.6 Case Study 3: Rotary Cement Kiln
325(1)
6.6.1 Introduction
325(1)
6.6.2 Gas-Solid Flow in a Cement Kiln
326(1)
6.6.3 CFD Modeling
327(1)
6.6.3.1 Model for Bed Region
327(1)
6.6.3.2 Model for Freeboard Region
328(1)
6.6.3.3 Radiation Modeling
330(1)
6.6.3.4 Mass Transfer From Bed to Freeboard
330(1)
6.6.4 Coupling Between Two Models
331(1)
6.6.5 Simulations of Rotary Cement Kilns
332(1)
6.6.6 Effect of Burner Operational Parameters
334(1)
6.6.7 Conclusions
335(1)
6.7 Case Study 4: Bubbling Fluidized Bed
336(1)
6.7.1 Introduction
336(1)
6.7.2 CFD-DEM Model
336(1)
6.7.2.1 Governing Equation of Gas Phase
336(1)
6.7.2.2 Governing Equation of Solid Phase
336(1)
6.7.2.3 Closure Models
337(2)
6.7.3 Gas-Solid Drag Models
339(1)
6.7.4 Simulation Setup
343(1)
6.7.5 Simulation Results for Goldschmidt et al.
344(1)
6.7.6 Simulation Results for NETL Challenge Problem
346(1)
6.7.7 Discussion
348(1)
6.7.8 Conclusion
348(2)
6.8 Summary and Outlook
350(1)
List of Abbreviations
351(1)
References
351(8)
7 Liquid-Solid Processes
359(118)
Divyamaan Wadnerkar
Prashant Gunjal
VedPrakash Mishra
7.1 Introduction
359(3)
7.2 Slurry Transportation
362(1)
7.2.1 Hydrodynamics and Flow Regimes
366(1)
7.2.2 Modeling of Slurry Transport System
371(1)
7.2.2.1 Non-Settling Slurries
371(1)
7.2.2.2 Settling Slurries
374(14)
7.2.3 Applications
388(2)
7.3 Agitation and Mixing in Stirred Vessel
390(1)
7.3.1 Hydrodynamics of Non-settling Slurries
391(1)
7.3.1.1 Kneading and Muller Mixer
400(1)
7.3.1.2 Vertical/Horizontal Screw Mixer
400(1)
7.3.1.3 High-Shear and Ultra-High-Shear Mixer
401(1)
7.3.1.4 Planetary Mixer
401(1)
7.3.1.5 Triple Shaft Anchor/Helical Mixer
401(1)
7.3.2 Modeling of Non-settling Slurries
401(1)
7.3.3 Applications
405(1)
7.3.4 Hydrodynamics of Settling Slurries
405(1)
7.3.4.1 Minimum Impeller Speed for Solid Suspension
407(1)
7.3.4.2 Solid Suspension Characterization Using Cloud Height
408(1)
7.3.4.3 Solid Concentration or Homogeneity
410(1)
7.3.5 Modeling of Settling Slurries
411(1)
7.3.6 Applications
414(1)
7.4 Fluidized Bed Reactor
415(1)
7.4.1 Hydrodynamics and Flow Regimes
416(1)
7.4.1.1 Minimum Fluidization Velocity
418(1)
7.4.1.2 Flow Instability in Conventional Fluidization Regime
420(1)
7.4.1.3 Average Solids Holdup
422(1)
7.4.1.4 Radial Solids Holdup and Liquids Velocity
423(2)
7.4.2 Models for Liquid-Solid Fluidized Bed
425(1)
7.4.2.1 Drift Flux Model
425(1)
7.4.2.2 Core-Annulus Model
426(1)
7.4.2.3 Computational Modeling of Liquid-Solid Fluidized Bed Reactors
428(4)
7.4.3 Applications
432(1)
7.4.3.1 Bioreactor and Bioprocesses
432(1)
7.4.3.2 Reflux Classifier
433(1)
7.4.3.3 Fluidized Bed Crystallizers (FBCs)
436(3)
7.5 Hydrocyclones
439(1)
7.5.1 Flow Fields in Hydrocyclones
440(1)
7.5.1.1 Velocity Components
440(1)
7.5.1.2 Particle Separation
442(3)
7.5.2 Modeling of Hydrocyclones
445(1)
7.5.2.1 Empirical Correlations
446(8)
7.5.3 Applications
454(1)
7.6 Summary and Path Forward
454(2)
Symbols and Abbreviations
456(2)
References
458(19)
8 Three or More Phase Reactors
477(56)
Onkar N. Manjrekar
Yujian Sun
Patrick L. Mills
8.1 Introduction
477(1)
8.2 Selection of Multiphase Reactor
477(1)
8.2.1 Transport Effects on Scale-Up Relative to Kinetics
478(1)
8.2.2 Ease of Operation and Safety at Scale
480(1)
8.3 Commonly Used Three-Phase Reactors and Their Hydrodynamics
481(1)
8.3.1 Slurry Bubble Columns
481(1)
8.3.1.1 Hydrodynamic Flow Regimes
481(2)
8.3.2 Packed Bubble Columns
483(1)
8.3.3 Gas-Liquid-Solid Fluidized Bed Reactors
484(1)
8.3.3.1 Classification
484(1)
8.3.3.2 Hydrodynamics
485(3)
8.3.4 Stirred Tank Reactors
488(1)
8.3.4.1 Hydrodynamics of Three-Phase Stirred Tank Reactors
488(2)
8.4 Models for Gas-Liquid-Solid Reactors
490(1)
8.4.1 Ideal Flow Models and Phenomenological Models (Low-Level Models)
492(1)
8.4.2 CFD Models
494(3)
8.5 Application and Recent Advances
497(1)
8.5.1 Slurry Bubble Column Reactors
497(1)
8.5.1.1 Phenomenological Models for Slurry Bubble Column
498(1)
8.5.1.2 Computational Fluid Dynamics Models
499(3)
8.5.2 CFD Modeling Application in Three-Phase Fluidized Bed Reactors
502(1)
8.5.3 Modeling of Three-Phase Stirred Tank Reactors
505(3)
8.6 Bioreactors
508(1)
8.6.1 Growth Models
509(1)
8.6.2 Euler-Euler Unstructured Models
509(1)
8.6.3 Euler-Euler-Lagrange Structured Models
510(2)
8.7 Gas-Liquid-Liquid and Gas-Liquid-Liquid-Solid Reactions
512(5)
8.8 Guidelines for Practicing Engineer and Extension to Other Multiphase Reactors
517(1)
8.8.1 Bubble Column Reactor Modifications
517(1)
8.8.2 Air-Lift Reactors
518(1)
8.8.3 Jet Loop Reactors
519(1)
8.8.4 Rotating Disc Contactors
520(1)
8.9 Concluding Remarks
521(1)
Symbols and Abbreviations
522(2)
References
524(9)
9 Trickle Bed Reactors
533(56)
Onkar N. Manjrekar
Patrick L. Mills
9.1 Introduction
533(2)
9.2 Hydrodynamics
535(1)
9.2.1 Flow Regime
535(1)
9.2.1.1 Flow Regime Prediction
535(1)
9.2.1.2 Flow Regime Transition
537(1)
9.2.2 Pressure Drop
538(1)
9.2.2.1 Relative Permeability Model
539(1)
9.2.2.2 Slit Models
540(1)
9.2.3 Liquid Holdup
541(1)
9.2.4 Liquid Distribution
542(1)
9.2.5 Catalyst Wetting Efficiency
543(1)
9.2.6 Heat Transfer and Thermal Stability in Trickle Bed Reactors
545(3)
9.3 Modeling of Trickle Bed Reactors
548(1)
9.3.1 Reactor-Scale Bulk Porosity Models
549(1)
9.3.1.1 Liquid-Limited Reactions
549(1)
9.3.1.2 Gas-Limited Reactions
551(2)
9.3.2 Radial Porosity Distribution Models
553(1)
9.3.3 Interstitial-Scale Models
555(1)
9.4 Application
556(1)
9.4.1 Reactor-Scale Models
556(1)
9.4.1.1 Catalyst Identification
557(1)
9.4.1.2 Kinetic Information
557(1)
9.4.1.3 Integrating Kinetics and Transport Limitation
557(1)
9.4.1.4 Prediction of Reactor-Scale Performance
558(1)
9.4.2 Radial Porosity Distribution Models
559(1)
9.4.2.1 Residence Time Distribution and Spreading of Liquid Phase
559(1)
9.4.2.2 Liquid Holdup and Pressure Drop Prediction
561(1)
9.4.2.3 Simulation of Reactions in Trickle Bed Reactors
563(4)
9.5 Trickle Bed Reactor Scale-Up
567(1)
9.6 Worked Out Examples
568(1)
9.6.1 Example 1: Selection of Operating Variables for a Laboratory-Scale Trickle Bed Reactor
568(1)
9.6.1.1 Step
1. Determine Whether the Reaction Thermodynamics Are Favorable
570(1)
9.6.1.2 Step
2. Determine the Maximum Catalyst Size That Can Be Used
571(1)
9.6.1.3 Step
3. Determine an Initial Range of Liquid Flow Rates and the Amount of Catalyst to Be Charged
571(1)
9.6.1.4 Step
4. Determine the Minimum Values for the Hydrogen Gas Flow Rate
571(1)
9.6.1.5 Step
5. Determine the Flow Regime
572(1)
9.6.1.6 Step
6. Determine the Two-Phase Flow Pressure Drops
573(1)
9.6.2 Example 2: Calculation of Hydrodynamic Conditions
574(1)
9.6.2.1 Determine the Flow Regime for this Reactor
574(1)
9.6.2.2 Predicting Trickle Flow to Pulsing Transition
574(1)
9.6.2.3 Calculate the Total Pressure Drop and Pressure Drop per Unit Length
575(1)
9.6.2.4 Calculation of External Liquid Holdup
576(1)
9.6.2.5 Estimate the Liquid-Solid Contacting Efficiency
577(1)
9.6.2.6 Estimation of Overall Effectiveness of Reactor for Liquid-Limited Reaction
578(1)
9.7 Summary
579(1)
Acknowledgments
579(1)
Symbols and Abbreviations
579(3)
References
582(7)
10 Flows with Phase Change
589(44)
Vivek V. Ranade
Ranjeet P. Utikar
10.1 Introduction
589(2)
10.2 Flows with Phase Change: Key Issues
591(3)
10.3 Approaches for Computational Modeling of Flows with Phase Change
594(1)
10.3.1 Interface-Resolved Computational Models
595(1)
10.3.2 Computational Flow Models with Assumption of Interpenetrating Continuum
597(1)
10.3.2.1 Boiling via Direct Contact Transfer
600(1)
10.3.2.2 Bulk Boiling
601(1)
10.3.2.3 Cavitation Source Terms:
602(1)
10.3.2.4 Boiling Near Heat Transfer Surfaces
602(1)
10.3.2.5 Liquid-to-Solid Phase Transitions
602(3)
10.4 Application Examples
605(1)
10.4.1 Liquid-to-Gas Phase Transitions
606(1)
10.4.2 Liquid-to-Solid Phase Transitions
611(1)
10.4.3 Gas-to-Solid Phase Transitions
617(4)
10.5 Summary
621(1)
Symbols and Abbreviations
622(2)
References
624(9)
Part IV Status and Path Forward
633(24)
11 Summary and Outlook
635(22)
Vivek V. Ranade
Ranjeet P. Utikar
11.1 Modeling of Multiphase Flows: Current Status
636(4)
11.2 Computational Modeling for Enabling Process Innovations
640(6)
11.3 Outlook
646(5)
References
651(6)
Index 657
Vivek V. Ranade is Bernal Chair Professor of Process Engineering, University of Limerick, Ireland. His research group uses experiments, computational flow modelling, reactor engineering and machine learning to generate new insights in multiphase flows, multiphase reactors and process intensification. He has authored over 200 peer-reviewed publications and six books.

Ranjeet P. Utikar is Associate Professor in Chemical Engineering at Curtin University in Australia. His research focuses on applying computational modeling techniques to understand, optimize and design energy efficient processes. He has authored over 80 peer-reviewed publications.