Atnaujinkite slapukų nuostatas

El. knyga: Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications

Edited by (Tsinghua University, China), Edited by (Tsinghua University, China), Edited by (Tsinghua University, China)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Feb-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119251088
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Feb-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119251088
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book covers the applications of multiphase reactors in the energy-related processes, especially to the emerging processes of clean, highly efficient conversion of fossil fuels to chemical products. It provides a comprehensive review on the development and characteristics of conventional and non-conventional multiphase reactors, with topics on the state of the art of applications of multiphase reactors. Each chapter is lead by a process description starting with the basic chemical reaction principles followed by the analysis of reactors for the appropriate reactor selection and concluding with industrial development of multiphase reactors.   Many of the topics in the book involve novel reactors, such as downer reactor, dual-riser reactor, plasma reactor, multi-staged fluidized bed, micro-channel reactor, and ultra-supercritical reactor.  In particular, case studies will be introduced to illustrate the special features of these reactors.
Preface xiii
List Of Contributors xv
1 Novel Fluid Catalytic Cracking Processes 1(48)
Jinsen Gao
Chunming Xu
Chunxi Lu
Chaohe Yang
Gang Wang
Xingying Lan
Yongmin Zhang
1.1 FCC Process Description
1(2)
1.2 Reaction Process Regulation for the Heavy Oil FCC
3(7)
1.2.1 Technology Background
3(1)
1.2.2 Principle of the Technology
3(1)
1.2.3 Key Fundamental Research
4(3)
1.2.4 Industrial Validation
7(3)
1.3 Advanced Riser Termination Devices for the FCC Processes
10(9)
1.3.1 Introduction
10(1)
1.3.2 General Idea of the Advanced RTD System
11(1)
1.3.3 Development of the External-Riser FCC RTD Systems
12(3)
1.3.4 Development of the Internal-Riser FCC RTDs
15(3)
1.3.5 Conclusions and Perspectives
18(1)
1.4 An MZCC FCC Process
19(9)
1.4.1 Technology Background
19(1)
1.4.2 Reaction Principle for MZCC
19(1)
1.4.3 Design Principle of MZCC Reactor
20(3)
1.4.4 Key Basic Study
23(1)
1.4.5 The Industry Application of MZCC
23(3)
1.4.6 Prospectives
26(2)
1.5 Two-Stage Riser Fluid Catalytic Cracking Process
28(8)
1.5.1 Preface
28(1)
1.5.2 Reaction Mechanism of Heavy Oil in the Riser Reactor
29(3)
1.5.3 The Proposed TSR FCC Process
32(1)
1.5.4 The Industrial Application of the TSR FCC Technology
33(1)
1.5.5 The Development of the TSR FCC Process
33(3)
1.6 FCC Gasoline Upgrading by Reducing Olefins Content Using SRFCC Process
36(8)
1.6.1 Research Background
36(1)
1.6.2 Reaction Principle of Gasoline Upgrading
37(1)
1.6.3 Design and Optimization on the Subsidiary Riser
38(1)
1.6.4 Key Fundamental Researches
38(4)
1.6.5 Industrial Applications of the SRFCC Process
42(1)
1.6.6 Outlook
43(1)
1.7 FCC Process Perspectives
44(1)
References
45(4)
2 Coal Combustion 49(16)
Guangxi Yue
Junfu Lv
Hairui Yang
2.1 Fuel and Combustion Products
49(3)
2.1.1 Composition and Properties of Fuel
49(1)
2.1.2 Analysis of Compositions in the Fuel
50(1)
2.1.3 Calorific Value of Fuel
50(1)
2.1.4 Classifications of Coal
50(1)
2.1.5 Combustion Products and Enthalpy of Flue Gas
51(1)
2.2 Device and Combustion Theory of Gaseous Fuels
52(1)
2.2.1 Ignition of the Gaseous Fuels
52(1)
2.2.2 Diffusion Gas Burner
52(1)
2.2.3 Fully Premixed-Type Gas Burner
53(1)
2.3 Combustion Theory of Solid Fuel
53(2)
2.3.1 The Chemical Reaction Mechanism of Carbon Combustion
54(1)
2.3.2 Carbon Combustion Reaction Process
54(1)
2.4 Grate Firing of Coal
55(2)
2.4.1 Coal Grate Firing Facilities
56(1)
2.5 Coal Combustion in CFB Boiler
57(3)
2.5.1 The Characteristic of Fluidized Bed
57(1)
2.5.2 Combustion Characteristic of CFB Boiler
58(1)
2.5.3 Development of Circulating Fluidized Bed Combustion Technology
58(1)
2.5.4 Comparison Between Bubbling Fluidized bed and Circulating Fluidized Bed
59(1)
2.6 Pulverized Coal Combustion
60(3)
2.6.1 Furnace Type of Pulverized Coal Combustion
61(1)
2.6.2 Circulation Mode of Water Wall
62(1)
2.6.3 Modern Large-Scale Pulverized Coal Combustion Technology
62(1)
2.6.4 The International Development of the Supercritical Pressure Boiler
62(1)
References
63(2)
3 Coal Gasification 65(54)
Qiang Li
Jiansheng Zhang
3.1 Coal Water Slurry
65(5)
3.1.1 The Advantage of CWS
65(1)
3.1.2 The Production of CWS
66(1)
3.1.3 The Atomization of CWS
67(3)
3.2 The Theory of Coal Gasification
70(9)
3.2.1 Overview of Coal Gasification
70(2)
3.2.2 The Main Reaction Processes of Coal Gasification
72(1)
3.2.3 Kinetics of Coal Gasification Reaction
73(4)
3.2.4 The Influencing Factors of Coal Gasification Reaction
77(2)
3.3 Fixed Bed Gasification of Coal
79(11)
3.3.1 The Principle of Fixed Bed Gasification
79(2)
3.3.2 The Classification of Fixed Bed Gasification Technology
81(1)
3.3.3 Typical Fixed Bed Gasification Technologies
81(4)
3.3.4 The Key Equipment for Pressurized Fixed Bed Gasifier
85(4)
3.3.5 The Application and Improvement of Pressurized Fixed Bed Gasifier in China
89(1)
3.4 Fluid Bed Gasification of Coal
90(8)
3.4.1 The Basic Principles of Fluidized Bed Gasification
90(1)
3.4.2 Typical Technology and Structure of Fluidized Bed Gasification
91(7)
3.5 Entrained Flow Gasification of Coal
98(14)
3.5.1 The Principle of Entrained Flow Gasification Technology
98(3)
3.5.2 Typical Entrained Gas Gasification Technologies
101(11)
3.6 Introduction to the Numerical Simulation of Coal Gasification
112(4)
3.6.1 The Numerical Simulation Method of Coal Gasification
112(1)
3.6.2 Coal Gasification Numerical Simulation (CFD) Method
113(3)
References
116(3)
4 New Development in Coal Pyrolysis Reactor 119(36)
Guangwen Xu
Xi Zeng
Jiangze Han
Chuigang Fan
4.1 Introduction
119(2)
4.2 Moving Bed with Internals
121(8)
4.2.1 Laboratory Tests at Kilogram Scale
122(3)
4.2.2 Verification Tests at 100-kg Scale
125(2)
4.2.3 Continuous Pilot Verification
127(2)
4.3 Solid Carrier FB Pyrolysis
129(10)
4.3.1 Fundamental Study
130(6)
4.3.2 Pilot Verification with Air Gasification
136(3)
4.4 Multistage Fluidized Bed Pyrolysis
139(6)
4.4.1 Experimental Apparatus and Method
139(2)
4.4.2 Results and Discussion
141(4)
4.5 Solid Carrier Downer Pyrolysis
145(4)
4.5.1 Experimental Apparatus and Method
146(1)
4.5.2 Results and Discussion
147(2)
4.6 Other Pyrolysis Reactors
149(4)
4.6.1 Solid Heat Carrier Fixed Bed
149(1)
4.6.2 A Few Other New Pyrolysis Reactors
150(3)
4.7 Concluding Remarks
153(1)
Acknowledgments
153(1)
References
153(2)
5 Coal Pyrolysis to Acetylene in Plasma Reactor 155(34)
Binhang Yan
Yi Cheng
5.1 Introduction
155(4)
5.1.1 Background
155(1)
5.1.2 Principles and Features of Thermal Plasma
156(1)
5.1.3 Basic Principles of Coal Pyrolysis in Thermal Plasma
157(1)
5.1.4 Development of Coal Pyrolysis to Acetylene Process
158(1)
5.2 Experimental Study of Coal Pyrolysis to Acetylene
159(5)
5.2.1 Experimental Setup
159(2)
5.2.2 Typical Experimental Results
161(3)
5.3 Thermodynamic Analysis of Coal Pyrolysis to Acetylene
164(7)
5.3.1 Equilibrium Composition with/without Consideration of Solid Carbon
164(1)
5.3.2 Validation of Thermodynamic Equilibrium Predictions
164(1)
5.3.3 Effect of Additional Chemicals on Thermodynamic Equilibrium
165(1)
5.3.4 Key Factors to Determine the Reactor Performance
166(2)
5.3.5 Key Factors to Determine the Reactor Performance
168(3)
5.4 Computational Fluid Dynamics-Assisted Process Analysis and Reactor Design
171(12)
5.4.1 Kinetic Models of Coal Devolatilization
171(5)
5.4.2 Generalized Model of Heat Transfer and Volatiles Evolution Inside Particles
176(4)
5.4.3 Cross-Scale Modeling and Simulation of Coal Pyrolysis to Acetylene
180(3)
5.5 Conclusion and Outlook
183(3)
References
186(3)
6 Multiphase Flow Reactors for Methanol and Dimethyl Ether Production 189(30)
Tiefeng Wang
Jinfu Wang
6.1 Introduction
189(2)
6.1.1 Methanol
189(1)
6.1.2 Dimethyl Ether
189(2)
6.2 Process Description
191(6)
6.2.1 Methanol Synthesis
191(1)
6.2.2 DME Synthesis
192(3)
6.2.3 Reaction Kinetics
195(2)
6.3 Reactor Selection
197(3)
6.3.1 Fixed Bed Reactor
197(1)
6.3.2 Slurry Reactor
198(2)
6.4 Industrial Design and Scale-Up of Fixed Bed Reactor
200(2)
6.4.1 Types of Fixed Bed Reactors
200(1)
6.4.2 Design of Large-Scale Fixed Bed Reactor
201(1)
6.5 Industrial Design and Scale-Up of Slurry Bed Reactor
202(11)
6.5.1 Flow Regime of the Slurry Reactor
202(1)
6.5.2 Hydrodynamics of Slurry Bed Reactor
203(1)
6.5.3 Process Intensification with Internals
203(3)
6.5.4 Scale-Up of Slurry Reactor
206(7)
6.6 Demonstration of Slurry Reactors
213(1)
6.7 Conclusions and Remarks
214(1)
References
215(4)
7 Fischer-Tropsch Processes and Reactors 219(52)
Li Weng
Zhuowu Men
7.1 Introduction to Fischer-Tropsch Processes and Reactors
219(3)
7.1.1 Introduction to Fischer-Tropsch Processes
219(1)
7.1.2 Commercial FT Processes
219(1)
7.1.3 FT Reactors
220(1)
7.1.4 Historical Development of FT SBCR
221(1)
7.1.5 Challenges for FT SBCR
222(1)
7.2 SBCR Transport Phenomena
222(9)
7.2.1 Hydrodynamics Characteristics
222(4)
7.2.2 Mass Transfer
226(3)
7.2.3 Heat Transfer
229(2)
7.3 SBCR Experiment Setup and Results
231(18)
7.3.1 Introduction to SBCR Experiments
231(3)
7.3.2 Cold Mode and Instrumentation
234(13)
7.3.3 Hot Model and Operation
247(2)
7.4 Modeling of SBCR for FT Synthesis Process
249(10)
7.4.1 Introduction
249(1)
7.4.2 Model Discussion
250(6)
7.4.3 Multiscale Analysis
256(2)
7.4.4 Conclusion
258(1)
7.5 Reactor Scale-Up and Engineering Design
259(3)
7.5.1 General Structures of SBCR
259(1)
7.5.2 Internal Equipment
259(2)
7.5.3 Design and Scale-Up Strategies of SBCR
261(1)
Nomenclature
262(1)
References
263(8)
8 Methanol to Lower Olefins and Methanol to Propylene 271(24)
Yao Wang
Fei Wei
8.1 Background
271(1)
8.2 Catalysts
272(1)
8.3 Catalytic Reaction Mechanism
273(2)
8.3.1 HP Mechanism
274(1)
8.3.2 Dual-Cycle Mechanism
274(1)
8.3.3 Complex Reactions
275(1)
8.4 Features of the Catalytic Process
275(3)
8.4.1 Autocatalytic Reactions
275(1)
8.4.2 Deactivation and Regeneration
276(2)
8.4.3 Exothermic Reactions
278(1)
8.5 Multiphase Reactors
278(8)
8.5.1 Fixed Bed Reactor
279(1)
8.5.2 Moving Bed Reactor
280(1)
8.5.3 Fluidized Bed Reactor
281(3)
8.5.4 Parallel or Series Connection Reactors
284(2)
8.6 Industrial Development
286(6)
8.6.1 Commercialization of MTO
286(2)
8.6.2 Commercialization of MTP
288(4)
References
292(3)
9 Rector Technology for Methanol to Aromatics 295(18)
Weizhong Qian
Fei Wei
9.1 Background and Development History
295(3)
9.1.1 The Purpose of Developing Methanol to Aromatics Technology
295(2)
9.1.2 Comparison of MTA with Other Technologies Using Methanol as Feedstock
297(1)
9.2 Chemistry Bases of MTA
298(2)
9.3 Effect of Operating Conditions
300(4)
9.3.1 Effect of Temperature
300(2)
9.3.2 Partial Pressure
302(1)
9.3.3 Space Velocity of Methanol
302(1)
9.3.4 Pressure
302(1)
9.3.5 Deactivation of the Catalyst
303(1)
9.4 Reactor Technology of MTA
304(6)
9.4.1 Choice of MTA Reactor: Fixed Bed or Fluidized Bed
304(1)
9.4.2 MTA in Lab-Scale Fluidized Bed Reactor and the Comparison in Reactors with Different Stages
305(1)
9.4.3 20kt/a CFB Apparatus for MTA
306(1)
9.4.4 Pilot Plant Test of 30kt/a FMTA System
306(4)
9.5 Comparison of MTA Reaction Technology with FCC and MTO System
310(1)
References
311(2)
10 Natural Gas Conversion 313(18)
Wisarn Yenjaichon
Farzam Fotovat
John R. Grace
10.1 Introduction
313(1)
10.2 Reforming Reactions
313(1)
10.3 Sulfur and Chloride Removal
314(1)
10.4 Catalysts
314(1)
10.5 Chemical Kinetics
315(1)
10.6 Fixed Bed Reforming Reactors
316(1)
10.7 Shift Conversion Reactors
317(1)
10.7.1 High-Temperature WGS
317(1)
10.7.2 Low-Temperature WGS
317(1)
10.8 Pressure Swing Adsorption
317(1)
10.9 Steam Reforming of Higher Hydrocarbons
318(1)
10.10 Dry (Carbon Dioxide) Reforming
318(2)
10.11 Partial Oxidation (PDX)
320(1)
10.11.1 Homogeneous PDX
321(1)
10.11.2 Catalytic Partial Oxidation
321(1)
10.12 Autothermal Reforming (ATR)
321(1)
10.13 Tri-Reforming
321(1)
10.14 Other Efforts to Improve SMR
322(4)
10.14.1 Fluidized Beds
323(1)
10.14.2 Permselective Membranes
323(2)
10.14.3 Sorbent-Enhanced Reforming
325(1)
10.15 Conclusions
326(1)
References
326(5)
11 Multiphase Reactors for Biomass Processing and Thermochemical Conversions 331(46)
Xiaotao T. Bi
Mohammad S. Masnadi
11.1 Introduction
331(1)
11.2 Biomass Feedstock Preparation
332(4)
11.2.1 Biomass Drying
332(1)
11.2.2 Biomass Torrefaction Treatment
333(3)
11.3 Biomass Pyrolysis
336(7)
11.3.1 Pyrolysis Principles and Reaction Kinetics
336(2)
11.3.2 Multiphase Reactors for Slow and Fast Pyrolysis
338(4)
11.3.3 Catalytic Pyrolysis of Biomass
342(1)
11.3.4 Biomass-to-Liquid Via Fast Pyrolysis
342(1)
11.4 Biomass Gasification
343(16)
11.4.1 Principles of Biomass Gasification
343(1)
11.4.2 Gasification Reactions, Mechanisms, and Models
344(3)
11.4.3 Catalytic Gasification of Biomass
347(2)
11.4.4 Multiphase Reactors for Gasification
349(6)
11.4.5 Biomass Gasification Reactor Modeling
355(1)
11.4.6 Downstream Gas Processing
356(1)
11.4.7 Technology Roadmap and Recent Market Developments
357(2)
11.5 Biomass Combustion
359(7)
11.5.1 Principles of Biomass Combustion
359(1)
11.5.2 Reaction Mechanisms and Kinetics
360(1)
11.5.3 Multiphase Reactors for Combustion
361(2)
11.5.4 Advanced Combustion Systems
363(2)
11.5.5 Agglomeration, Fouling, and Corrosion
365(1)
11.5.6 Future Technology Developments
365(1)
11.6 Challenges of Multiphase Reactors for Biomass Processing
366(3)
11.6.1 Fluidization of Irregular Biomass Particles
366(1)
11.6.2 Feeding/Conveying of Biomass
366(1)
11.6.3 Reactor Modeling, Simulation, and Scale-Up
367(1)
11.6.4 Economics of Commercial Biomass Conversion Systems
368(1)
References
369(8)
12 Chemical Looping Technology for Fossil Fuel Conversion with In Situ CO2 Control 377(28)
Liang-Shih Fan
Andrew Tong
Liang Zeng
12.1 Introduction
377(4)
12.1.1 Chemical Looping Concept
377(2)
12.1.2 Historical Development
379(2)
12.2 Oxygen Carrier Material
381(3)
12.2.1 Primary Material Selection
381(1)
12.2.2 Iron-Based Oxygen Carrier Development
382(2)
12.3 Chemical Looping Reactor System Design
384(12)
12.3.1 Thermodynamic Analysis
385(3)
12.3.2 Kinetic Analysis
388(4)
12.3.3 Hydrodynamic Analysis
392(4)
12.4 Chemical Looping Technology Platform
396(4)
12.4.1 Syngas Chemical Looping Process
397(1)
12.4.2 Coal Direct Chemical Looping Process
398(1)
12.4.3 Shale Gas-to-Syngas Process
399(1)
12.5 Conclusion
400(1)
References
401(4)
Index 405
Yi Cheng is currently a Professor in the Department of Chemical Engineering at Tsinghua University. He has received several awards such as the first prize of Natural Science Award by the Ministry of Education of China and the first prize of Science and Technology Progress Award by China Petroleum and Chemical Industry Federation. He has written numerous articles and presented papers at many conferences.

Fei Wei is currently a Professor in the Department of Chemical Engineering at Tsinghua University. He has been the head of Fluidization Lab of Tsinghua University (FLOTU) for 20 years, and received several top-level national awards in China. He has written numerous articles, book chapters and book chapters and presented papers at many conferences.

Yong Jin is currently a Professor in the Department of Chemical Engineering at Tsinghua University and a Member of the Chinese Academy of Engineering. He has authored more than 300 published articles, numerous books and book chapters and presented papers at approximately 50 conferences.