Atnaujinkite slapukų nuostatas

Multiple Factor Analysis by Example Using R [Minkštas viršelis]

(Agrocampus-Ouest, Rennes, France)
  • Formatas: Paperback / softback, 272 pages, aukštis x plotis: 234x156 mm, weight: 453 g, 94 Illustrations, black and white
  • Serija: Chapman & Hall/CRC The R Series
  • Išleidimo metai: 14-Oct-2024
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-10: 1032924187
  • ISBN-13: 9781032924182
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 272 pages, aukštis x plotis: 234x156 mm, weight: 453 g, 94 Illustrations, black and white
  • Serija: Chapman & Hall/CRC The R Series
  • Išleidimo metai: 14-Oct-2024
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-10: 1032924187
  • ISBN-13: 9781032924182
Kitos knygos pagal šią temą:

Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR).

The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.



Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of the methodology, this book brings together the theoretical and methodological aspects of MFA. It also covers principal component analysis

Principal Component Analysis. Multiple Correspondence Analysis. Factor Analysis for Mixed Data. Weighting Groups of Variables. Comparing Clouds of Partial Individuals. Factors Common to Different Groups of Variables. Comparing Groups of Variables and Indscal Model. Qualitative and Mixed Data. Multiple Factor Analysis and Procrustes Analysis. Hierarchical Multiple Factor Analysis. Matrix Calculus and Euclidean Vector Space. Bibliography.

Jérōme Pagčs is a professor of statistics at Agrocampus (Rennes, France), where he heads the Laboratory of Applied Mathematics (LMA²).