Preface |
|
xi | |
|
|
xiii | |
|
|
1 | (34) |
|
1.1 Generating functions and asymptotics |
|
|
1 | (10) |
|
1.2 Analytic properties of Dirichlet series |
|
|
11 | (8) |
|
1.3 Euler products and the zeta function |
|
|
19 | (12) |
|
|
31 | (2) |
|
|
33 | (2) |
|
2 The elementary theory of arithmetic functions |
|
|
35 | (41) |
|
|
35 | (11) |
|
2.2 The prime number estimates of Chebyshev and of Mertens |
|
|
46 | (8) |
|
2.3 Applications to arithmetic functions |
|
|
54 | (11) |
|
2.4 The distribution of Ω(n) --- ω(n) |
|
|
65 | (3) |
|
|
68 | (3) |
|
|
71 | (5) |
|
3 Principles and first examples of sieve methods |
|
|
76 | (32) |
|
|
76 | (6) |
|
3.2 The Selberg lambda-squared method |
|
|
82 | (7) |
|
3.3 Sifting an arithmetic progression |
|
|
89 | (2) |
|
|
91 | (10) |
|
|
101 | (3) |
|
|
104 | (4) |
|
4 Primes in arithmetic progressions: I |
|
|
108 | (29) |
|
|
108 | (7) |
|
|
115 | (5) |
|
4.3 Dirichlet L-functions |
|
|
120 | (13) |
|
|
133 | (1) |
|
|
134 | (3) |
|
|
137 | (31) |
|
5.1 The inverse Mellin transform |
|
|
137 | (10) |
|
|
147 | (15) |
|
|
162 | (2) |
|
|
164 | (4) |
|
6 The Prime Number Theorem |
|
|
168 | (31) |
|
|
168 | (11) |
|
6.2 The Prime Number Theorem |
|
|
179 | (13) |
|
|
192 | (3) |
|
|
195 | (4) |
|
7 Applications of the Prime Number Theorem |
|
|
199 | (45) |
|
7.1 Numbers composed of small primes |
|
|
199 | (16) |
|
7.2 Numbers composed of large primes |
|
|
215 | (5) |
|
7.3 Primes in short intervals |
|
|
220 | (8) |
|
7.4 Numbers composed of a prescribed number of primes |
|
|
228 | (11) |
|
|
239 | (2) |
|
|
241 | (3) |
|
8 Further discussion of the Prime Number Theorem |
|
|
244 | (38) |
|
8.1 Relations equivalent to the Prime Number Theorem |
|
|
244 | (6) |
|
8.2 An elementary proof of the Prime Number Theorem |
|
|
250 | (9) |
|
8.3 The Wiener-Ikehara Tauberian theorem |
|
|
259 | (7) |
|
8.4 Beurling's generalized prime numbers |
|
|
266 | (10) |
|
|
276 | (3) |
|
|
279 | (3) |
|
9 Primitive characters and Gauss sums |
|
|
282 | (44) |
|
|
282 | (4) |
|
|
286 | (9) |
|
|
295 | (11) |
|
9.4 Incomplete character sums |
|
|
306 | (15) |
|
|
321 | (2) |
|
|
323 | (3) |
|
10 Analytic properties of the zeta function and L-functions |
|
|
326 | (32) |
|
10.1 Functional equations and analytic continuation |
|
|
326 | (19) |
|
10.2 Products and sums over zeros |
|
|
345 | (11) |
|
|
356 | (1) |
|
|
356 | (2) |
|
11 Primes in arithmetic progressions: II |
|
|
358 | (39) |
|
|
358 | (9) |
|
|
367 | (10) |
|
11.3 The Prime Number Theorem for arithmetic progressions |
|
|
377 | (9) |
|
|
386 | (5) |
|
|
391 | (2) |
|
|
393 | (4) |
|
|
397 | (22) |
|
|
397 | (13) |
|
12.2 Weil's explicit formula |
|
|
410 | (6) |
|
|
416 | (1) |
|
|
417 | (2) |
|
|
419 | (33) |
|
13.1 Estimates for primes |
|
|
419 | (14) |
|
13.2 Estimates for the zeta function |
|
|
433 | (14) |
|
|
447 | (2) |
|
|
449 | (3) |
|
|
452 | (11) |
|
14.1 General distribution of the zeros |
|
|
452 | (4) |
|
14.2 Zeros on the critical line |
|
|
456 | (4) |
|
|
460 | (1) |
|
|
461 | (2) |
|
15 Oscillations of error terms |
|
|
463 | (23) |
|
15.1 Applications of Landau's theorem |
|
|
463 | (12) |
|
15.2 The error term in the Prime Number Theorem |
|
|
475 | (7) |
|
|
482 | (2) |
|
|
484 | (2) |
|
|
|
A The Riemann-Stieltjes integral |
|
|
486 | (9) |
|
|
492 | (1) |
|
|
493 | (2) |
|
B Bernoulli numbers and the Euler-MacLaurin summation formula |
|
|
495 | (25) |
|
|
513 | (4) |
|
|
517 | (3) |
|
|
520 | (15) |
|
|
531 | (2) |
|
|
533 | (2) |
|
D Topics in harmonic analysis |
|
|
535 | (9) |
|
D.1 Pointwise convergence of Fourier series |
|
|
535 | (3) |
|
D.2 The Poisson summation formula |
|
|
538 | (4) |
|
|
542 | (1) |
|
|
542 | (2) |
Name index |
|
544 | (6) |
Subject index |
|
550 | |