Preface |
|
xvii | |
Author |
|
xxi | |
Chapter 1 Thermodynamics and Phase Equilibria |
|
1 | (72) |
|
1.1 Thermodynamic Fundamentals |
|
|
1 | (8) |
|
1.1.1 Laws of Thermodynamics |
|
|
2 | (3) |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.1.2 Thermodynamic Functions |
|
|
5 | (2) |
|
1.1.3 Conditions for Equilibrium |
|
|
7 | (2) |
|
1.2 PVT Behavior of Fluids |
|
|
9 | (12) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.2.2.1 Qualitative PVT Behavior of Pure Substances |
|
|
11 | (1) |
|
1.2.3 Principle of Corresponding States |
|
|
12 | (2) |
|
|
14 | (7) |
|
1.2.4.1 van der Waals Equation |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.2.4.3 RedlichKwong Equation |
|
|
15 | (1) |
|
|
16 | (2) |
|
1.2.4.5 PengRobinson Equation |
|
|
18 | (1) |
|
1.2.4.6 BenedictWebbRubin (BWR) Equation |
|
|
19 | (1) |
|
1.2.4.7 LeeKeslerPlocker Equation |
|
|
19 | (2) |
|
|
21 | (33) |
|
|
21 | (8) |
|
|
23 | (1) |
|
|
24 | (1) |
|
1.3.1.3 Application to Equations of State |
|
|
25 | (4) |
|
1.3.2 Phase Equilibrium in an Ideal System |
|
|
29 | (3) |
|
|
30 | (1) |
|
1.3.2.2 Binary Ideal Solutions |
|
|
30 | (1) |
|
|
31 | (1) |
|
1.3.3 Phase Equilibrium in Non-Ideal Systems |
|
|
32 | (11) |
|
1.3.3.1 Activity Coefficients |
|
|
32 | (3) |
|
1.3.3.2 Thermodynamic Consistency of VLE Data |
|
|
35 | (1) |
|
1.3.3.3 Margules Equation |
|
|
36 | (1) |
|
1.3.3.4 van Laar Equation |
|
|
37 | (1) |
|
|
38 | (1) |
|
1.3.3.6 Non-Random Two-Liquid (NRTL) (Renon) Equation |
|
|
39 | (1) |
|
1.3.3.7 Universal Quasi-Chemical (UNIQUAC) Equation |
|
|
39 | (4) |
|
1.3.4 VaporLiquid Equilibria: Applications |
|
|
43 | (9) |
|
|
48 | (4) |
|
1.3.5 LiquidLiquid and VaporLiquidLiquid Equilibria |
|
|
52 | (2) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (6) |
|
1.4.1 Enthalpy Balances Involving Phase Change |
|
|
59 | (1) |
|
1.5 Characterizing Petroleum Fractions |
|
|
60 | (6) |
|
1.5.1 True Boiling Point (TBP) |
|
|
61 | (1) |
|
1.5.2 Generating Pseudocomponents |
|
|
61 | (2) |
|
|
63 | (1) |
|
1.5.4 Pseudocomponent Properties |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (6) |
|
|
72 | (1) |
Chapter 2 The Equilibrium Stage |
|
73 | (64) |
|
|
74 | (8) |
|
|
74 | (1) |
|
|
75 | (4) |
|
2.1.2.1 The Phase Envelope |
|
|
75 | (2) |
|
|
77 | (1) |
|
|
78 | (1) |
|
2.1.3 Distribution Coefficients |
|
|
79 | (1) |
|
|
80 | (2) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
2.1.4.5 General-Type Flash |
|
|
82 | (1) |
|
2.2 Performance of the Equilibrium Stage |
|
|
82 | (9) |
|
2.2.1 Single-Feed Systems |
|
|
83 | (4) |
|
2.2.2 Single-Stage Absorption/Stripping |
|
|
87 | (1) |
|
2.2.3 Close Boilers and Azeotropes |
|
|
88 | (3) |
|
|
91 | (46) |
|
2.3.1 Isothermal Flash Method |
|
|
93 | (13) |
|
|
93 | (3) |
|
2.3.1.2 Extension to General Flash Calculations |
|
|
96 | (10) |
|
2.3.2 Phase Boundary Calculations |
|
|
106 | (8) |
|
2.3.2.1 Bubble PointDew Point Calculations for Composition-Independent K-Values |
|
|
107 | (3) |
|
2.3.2.2 Iterative Method for Composition-Dependent K-Values |
|
|
110 | (1) |
|
2.3.2.3 Simultaneous Method |
|
|
110 | (2) |
|
2.3.2.4 Bubble Point Temperature |
|
|
112 | (1) |
|
2.3.2.5 Dew Point Temperature |
|
|
113 | (1) |
|
2.3.3 LiquidLiquid and VaporLiquidLiquid Equilibria |
|
|
114 | (12) |
|
2.3.3.1 Rigorous VLLE Model |
|
|
117 | (1) |
|
2.3.3.2 K-Value Computations |
|
|
117 | (2) |
|
2.3.3.3 Application to an Equilibrium Stage |
|
|
119 | (2) |
|
2.3.3.4 Iterative Solution |
|
|
121 | (1) |
|
2.3.3.5 VLLE in HydrocarbonWater Systems |
|
|
122 | (4) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
127 | (9) |
|
|
136 | (1) |
Chapter 3 Fundamentals of Multistage Separation |
|
137 | (28) |
|
|
138 | (9) |
|
3.1.1 Graphical Representation |
|
|
138 | (1) |
|
3.1.2 Equilibrium Relationships |
|
|
139 | (2) |
|
3.1.3 Parameter Relationships |
|
|
141 | (6) |
|
|
147 | (7) |
|
3.2.1 Temperature Effect on Separation |
|
|
148 | (1) |
|
3.2.2 Mathematical Representation |
|
|
148 | (1) |
|
3.2.3 Parameter Relationships |
|
|
149 | (5) |
|
3.3 Absorption/Stripping Basics |
|
|
154 | (6) |
|
|
154 | (4) |
|
3.3.2 Multistage Absorption |
|
|
158 | (1) |
|
3.3.3 Operating Parameters and Mathematical Formulation |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (4) |
Chapter 4 Material Balances in Multi-Component Separation |
|
165 | (16) |
|
|
165 | (1) |
|
4.2 Types of Column Specifications |
|
|
166 | (11) |
|
4.2.1 Primary Variable Specifications |
|
|
166 | (4) |
|
4.2.2 Derived Variable Specifications |
|
|
170 | (3) |
|
4.2.3 General Specifications |
|
|
173 | (4) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
177 | (4) |
Chapter 5 Binary Distillation: Principles |
|
181 | (36) |
|
|
181 | (8) |
|
5.1.1 Development of the Model |
|
|
182 | (4) |
|
5.1.1.1 Assumptions and Simplifications |
|
|
184 | (2) |
|
5.1.2 Analytical Solution |
|
|
186 | (1) |
|
5.1.3 Graphical Representation on the YX Diagram |
|
|
186 | (3) |
|
5.1.3.1 Constructing Equilibrium Stages |
|
|
188 | (1) |
|
|
189 | (15) |
|
|
190 | (5) |
|
5.2.1.1 Rectifying Section Operating Line |
|
|
191 | (1) |
|
5.2.1.2 Stripping Section Operating Line |
|
|
191 | (1) |
|
|
191 | (2) |
|
5.2.1.4 Analytical Solution |
|
|
193 | (1) |
|
5.2.1.5 The Description Rule |
|
|
194 | (1) |
|
5.2.2 Graphical Solution on the YX Diagram |
|
|
195 | (8) |
|
5.2.2.1 Representing a Total Column |
|
|
197 | (1) |
|
5.2.2.2 Separation and Reflux Ratio Specified |
|
|
198 | (1) |
|
5.2.2.3 Distillate Composition, Reflux Ratio, and Number of Stages Specified |
|
|
199 | (1) |
|
5.2.2.4 Separation and Number of Stages Specified |
|
|
199 | (1) |
|
5.2.2.5 Reflux Ratio, Product Rates, and Number of Stages Specified |
|
|
199 | (1) |
|
5.2.2.6 Columns with Multiple Feeds, Side Draws, and Side Heaters/Coolers |
|
|
199 | (4) |
|
5.2.2.7 Columns with Stripping Vapor Feed |
|
|
203 | (1) |
|
|
203 | (1) |
|
5.3 Column Solution with Material and Enthalpy Balances |
|
|
204 | (11) |
|
5.3.1 Single-Stage Mass and Energy Balances |
|
|
205 | (1) |
|
5.3.2 Binary HX Diagrams |
|
|
206 | (1) |
|
5.3.3 Solving Distillation Columns on the HX Diagram |
|
|
207 | (4) |
|
5.3.4 Other Column Features Represented on the HX Diagram |
|
|
211 | (6) |
|
|
211 | (1) |
|
5.3.4.2 Multiple Feeds, Side Draws |
|
|
212 | (2) |
|
5.3.4.3 Side Coolers, Heaters |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
Chapter 6 Binary Distillation: Applications |
|
217 | (30) |
|
6.1 Parameters Affecting Column Performance |
|
|
217 | (9) |
|
6.1.1 Effect of Reflux Ratio and Product Rates |
|
|
218 | (4) |
|
|
220 | (2) |
|
6.1.2 Effect of Number of Stages and Feed Location |
|
|
222 | (2) |
|
6.1.3 Number of Stages versus Reflux Ratio |
|
|
224 | (2) |
|
6.2 Parameter Interactions in Fixed Configuration Columns |
|
|
226 | (5) |
|
6.2.1 Column Operable Ranges |
|
|
227 | (1) |
|
6.2.2 Feasible Ranges of Product Rates and Reflux Ratios |
|
|
228 | (1) |
|
6.2.3 Feasible Ranges of Distillate and Bottoms Compositions |
|
|
229 | (1) |
|
6.2.4 Feasible Ranges of Distillate Composition and Reflux Ratio |
|
|
230 | (1) |
|
6.2.5 Feasible Ranges of Distillate Composition and Bottoms Rate |
|
|
230 | (1) |
|
6.3 Design Strategies Guided by Graphical Representation |
|
|
231 | (11) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (3) |
|
|
246 | (1) |
Chapter 7 Multi-Component Separation: Conventional Distillation |
|
247 | (20) |
|
7.1 Characteristics of Multi-Component Separation |
|
|
247 | (1) |
|
7.2 Factors Affecting Separation |
|
|
248 | (3) |
|
7.3 Specifying Column Performance |
|
|
251 | (11) |
|
7.3.1 Variation in Dependent Variables with Reflux Ratio and Product Rate |
|
|
252 | (4) |
|
7.3.2 Parameter Feasible Ranges |
|
|
256 | (6) |
|
7.3.2.1 Product Temperature as the Independent Variable |
|
|
259 | (3) |
|
7.4 Number of Trays and Feed Location |
|
|
262 | (2) |
|
7.4.1 Minimum Reflux and Minimum Trays |
|
|
262 | (1) |
|
|
262 | (2) |
|
7.4.3 Effect of Feed Thermal Conditions |
|
|
264 | (1) |
|
7.4.4 Rectifiers and Reboiled Strippers |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (2) |
Chapter 8 Absorption and Stripping |
|
267 | (18) |
|
|
267 | (3) |
|
8.2 Liquid-to-Vapor Ratios |
|
|
270 | (3) |
|
|
273 | (1) |
|
8.4 Performance Specifications |
|
|
274 | (3) |
|
8.5 Graphical Representation |
|
|
277 | (4) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
282 | (3) |
Chapter 9 Complex Distillation and Multiple Column Processes |
|
285 | (38) |
|
|
286 | (13) |
|
9.1.1 Columns with a Reboiler and No Condenser |
|
|
286 | (7) |
|
9.1.2 Columns with a Condenser and No Reboiler |
|
|
293 | (4) |
|
9.1.3 Columns with a Condenser and a Reboiler |
|
|
297 | (2) |
|
|
299 | (11) |
|
|
299 | (1) |
|
|
300 | (3) |
|
9.2.2.1 Modular Representation |
|
|
300 | (1) |
|
9.2.2.2 General Column Performance Considerations |
|
|
301 | (2) |
|
9.2.3 Partial and Total Condensers |
|
|
303 | (7) |
|
9.2.3.1 Performance of Multi-Product Columns |
|
|
304 | (6) |
|
9.3 Side Heaters/Coolers and Pumparounds |
|
|
310 | (5) |
|
|
310 | (3) |
|
9.3.1.1 Temperature Levels |
|
|
310 | (1) |
|
9.3.1.2 Heat of Absorption |
|
|
311 | (1) |
|
9.3.1.3 Column Vapor and Liquid Flows |
|
|
311 | (2) |
|
|
313 | (2) |
|
9.4 Multiple Column Processes |
|
|
315 | (3) |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
319 | (3) |
|
|
322 | (1) |
Chapter 10 Special Distillation Processes |
|
323 | (32) |
|
10.1 Azeotropic and Extractive Distillation |
|
|
323 | (25) |
|
10.1.1 Separating Azeotropes with Pressure-Sensitive Composition |
|
|
325 | (5) |
|
10.1.1.1 Graphical Representation |
|
|
328 | (2) |
|
10.1.2 Separating Heterogeneous Minimum-Boiling Azeotropes |
|
|
330 | (3) |
|
10.1.2.1 Graphical Representation |
|
|
331 | (2) |
|
10.1.3 Separation by Forming an Azeotrope with One Component |
|
|
333 | (2) |
|
10.1.4 Separation by Forming Two Binary Azeotropes |
|
|
335 | (3) |
|
10.1.5 Separation by Forming a Ternary Azeotrope |
|
|
338 | (3) |
|
10.1.6 Separation by Extractive Distillation |
|
|
341 | (9) |
|
10.1.6.1 Graphical Representation |
|
|
342 | (4) |
|
10.1.6.2 Sample Equilibrium Calculations |
|
|
346 | (1) |
|
10.1.6.3 Determining the Number of Stages |
|
|
347 | (1) |
|
10.1.6.4 Benzene Recovery Section |
|
|
348 | (1) |
|
10.2 Three-Phase Distillation |
|
|
348 | (2) |
|
10.3 Reactive Multistage Separation |
|
|
350 | (2) |
|
10.3.1 Separation of Close Boilers |
|
|
351 | (1) |
|
10.3.2 Esterification of Acetic Acid |
|
|
351 | (1) |
|
10.3.3 Other Applications |
|
|
351 | (1) |
|
|
352 | (2) |
|
|
354 | (1) |
Chapter 11 LiquidLiquid Extraction and Supercritical Extraction |
|
355 | (26) |
|
11.1 Extraction Fundamentals and Terminology |
|
|
356 | (4) |
|
|
356 | (2) |
|
|
358 | (1) |
|
11.1.3 Refluxed Extractors |
|
|
359 | (1) |
|
11.2 Graphical Representation |
|
|
360 | (14) |
|
11.2.1 Generating Equilibrium Diagrams |
|
|
361 | (1) |
|
11.2.2 Single-Stage Calculations |
|
|
361 | (3) |
|
11.2.3 Countercurrent Multistage Calculations |
|
|
364 | (5) |
|
11.2.4 Multiple Feed and Refluxed Extractors |
|
|
369 | (2) |
|
11.2.5 LLE Rectilinear Representation |
|
|
371 | (10) |
|
11.2.5.1 Analytical Approach |
|
|
371 | (3) |
|
11.3 Extraction Equipment |
|
|
374 | (1) |
|
11.4 Supercritical Extraction |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
377 | (3) |
|
|
380 | (1) |
Chapter 12 Shortcut Methods |
|
381 | (54) |
|
12.1 Columns at Total Reflux |
|
|
381 | (17) |
|
|
382 | (1) |
|
12.1.2 Mathematical Representation |
|
|
383 | (4) |
|
12.1.3 Degrees of Freedom |
|
|
387 | (1) |
|
|
388 | (4) |
|
12.1.4.1 General Specifications |
|
|
390 | (2) |
|
|
392 | (6) |
|
12.2 Minimum Reflux Ratio |
|
|
398 | (2) |
|
12.3 Column Design and Performance Analysis |
|
|
400 | (3) |
|
12.4 Modular Shortcut Methods |
|
|
403 | (21) |
|
|
404 | (7) |
|
|
411 | (6) |
|
12.4.3 Complex Configurations |
|
|
417 | (5) |
|
12.4.3.1 Reboiled Stripper |
|
|
418 | (2) |
|
12.4.3.2 Distillation Column with a Partial Condenser |
|
|
420 | (1) |
|
12.4.3.3 Multi-Column System |
|
|
421 | (1) |
|
12.4.4 LiquidLiquid Extraction by the Shortcut Column Section Method |
|
|
422 | (2) |
|
|
424 | (1) |
|
|
425 | (1) |
|
|
425 | (1) |
|
|
425 | (9) |
|
|
434 | (1) |
Chapter 13 Rigorous Equilibrium Methods |
|
435 | (54) |
|
|
435 | (4) |
|
|
437 | (2) |
|
13.2 Steady-State Solution Methods |
|
|
439 | (26) |
|
13.2.1 Method of Thiele and Geddes |
|
|
440 | (3) |
|
13.2.2 Modified ThieleGeddes Method |
|
|
443 | (5) |
|
13.2.3 Method of Wang and Henke |
|
|
448 | (1) |
|
|
448 | (2) |
|
13.2.5 Method of Naphtali and Sandholm |
|
|
450 | (3) |
|
13.2.6 Method of Wang and Oleson |
|
|
453 | (1) |
|
|
453 | (11) |
|
13.2.7.1 Inner Loop Property Models |
|
|
456 | (1) |
|
13.2.7.2 Outer Loop Property Models |
|
|
457 | (1) |
|
13.2.7.3 Two-Tier Algorithm |
|
|
457 | (2) |
|
13.2.7.4 Tridiagonal Matrix Algorithm |
|
|
459 | (5) |
|
13.2.8 Stage Efficiencies |
|
|
464 | (1) |
|
13.3 Chemical Reactions in Multistage Separation |
|
|
465 | (2) |
|
13.4 Three-Phase Distillation |
|
|
467 | (1) |
|
13.4.1 HydrocarbonWater Systems |
|
|
468 | (1) |
|
13.5 LiquidLiquid Extraction |
|
|
468 | (1) |
|
13.6 Convergence by Dynamic Iteration |
|
|
469 | (5) |
|
|
474 | (10) |
|
13.7.1 Dynamic Model Definition |
|
|
475 | (2) |
|
13.7.2 Solving the Dynamic Model Equations |
|
|
477 | (14) |
|
|
478 | (1) |
|
13.7.2.2 Two-Point Implicit Method |
|
|
479 | (1) |
|
13.7.2.3 Runge-Kutta Method |
|
|
480 | (4) |
|
|
484 | (1) |
|
|
485 | (1) |
|
|
485 | (1) |
|
|
485 | (1) |
|
|
486 | (3) |
Chapter 14 Tray Hydraulics, Rate-Based Analysis, Tray Efficiency |
|
489 | (40) |
|
|
491 | (18) |
|
|
492 | (1) |
|
14.1.1.1 Bubble Cap Trays |
|
|
493 | (1) |
|
14.1.1.2 Sieve or Perforated Trays |
|
|
493 | (1) |
|
|
493 | (1) |
|
14.1.2 Factors Affecting Tray Performance |
|
|
493 | (4) |
|
|
493 | (1) |
|
14.1.2.2 Vapor Entrainment |
|
|
494 | (1) |
|
14.1.2.3 Liquid Entrainment |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
495 | (1) |
|
|
496 | (1) |
|
14.1.3 Steps in the Analysis of Tray Hydraulics |
|
|
497 | (1) |
|
14.1.4 General Tray Hydraulics Correlations |
|
|
498 | (16) |
|
|
498 | (3) |
|
14.1.4.2 Tray Pressure Drop |
|
|
501 | (2) |
|
14.1.4.3 Downcomer Backup |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
504 | (5) |
|
|
509 | (5) |
|
|
514 | (6) |
|
14.3.1 Murphree Efficiency |
|
|
514 | (3) |
|
14.3.2 Overall Column Tray Efficiency |
|
|
517 | (13) |
|
14.3.2.1 Theoretical Model |
|
|
517 | (1) |
|
14.3.2.2 Empirical Methods |
|
|
518 | (2) |
|
|
520 | (2) |
|
|
522 | (1) |
|
|
522 | (1) |
|
|
522 | (6) |
|
|
528 | (1) |
Chapter 15 Packed Columns |
|
529 | (32) |
|
15.1 Continuous Differential Mass Transfer |
|
|
530 | (6) |
|
15.1.1 Nonparallel, Straight Operating Line, and Equilibrium Curve |
|
|
532 | (4) |
|
15.2 Rate of Mass Transfer |
|
|
536 | (5) |
|
15.2.1 Mass Transfer Correlations |
|
|
541 | (1) |
|
15.3 Mass Transfer in Packed Columns |
|
|
541 | (7) |
|
15.3.1 General Rate-Based Model |
|
|
546 | (2) |
|
15.4 Packed Column Design |
|
|
548 | (8) |
|
15.4.1 Estimating the HETP |
|
|
548 | (1) |
|
15.4.2 Packed Column Capacity |
|
|
549 | (1) |
|
15.4.3 Packed Column Design Outline |
|
|
550 | (4) |
|
15.4.3.1 Packed Columns versus Trayed Columns |
|
|
551 | (3) |
|
15.4.4 Packed Column Design by the Group Method |
|
|
554 | (2) |
|
|
556 | (1) |
|
|
557 | (1) |
|
|
557 | (1) |
|
|
557 | (2) |
|
|
559 | (2) |
Chapter 16 Control and Optimization of Separation Processes |
|
561 | (12) |
|
16.1 Multi loop Controllers |
|
|
562 | (7) |
|
16.1.1 Pairing the Manipulated and Controlled Variables |
|
|
562 | (7) |
|
16.2 Dynamic Predictive Multivariable Control |
|
|
569 | (1) |
|
16.2.1 Model-Based Control and Optimization |
|
|
569 | (1) |
|
|
570 | (1) |
|
|
570 | (1) |
|
|
570 | (1) |
|
|
570 | (1) |
|
|
571 | (2) |
Chapter 17 Batch Distillation |
|
573 | (26) |
|
17.1 Principles of Batch Distillation |
|
|
574 | (3) |
|
|
575 | (1) |
|
17.1.2 Operating Strategies |
|
|
575 | (1) |
|
|
575 | (1) |
|
17.1.2.2 Constant Distillate Composition |
|
|
576 | (1) |
|
17.1.2.3 Cycling Operation |
|
|
576 | (1) |
|
17.1.3 Conceptual Control and Degrees of Freedom |
|
|
576 | (1) |
|
|
577 | (18) |
|
17.2.1 Graphical and Shortcut Methods: Binary Systems |
|
|
577 | (9) |
|
17.2.1.1 Differential Distillation |
|
|
581 | (5) |
|
17.2.2 Shortcut Methods: Multi-Component Distillation |
|
|
586 | (4) |
|
|
590 | (4) |
|
|
594 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
596 | (1) |
|
|
596 | (2) |
|
|
598 | (1) |
Chapter 18 Membrane Separation Operations |
|
599 | (32) |
|
18.1 General Membrane Separation Process |
|
|
599 | (7) |
|
18.1.1 Possible Consistent Sets of Units |
|
|
602 | (4) |
|
18.2 Performance of Membrane Separators |
|
|
606 | (12) |
|
18.2.1 Perfect Mixing Model |
|
|
606 | (7) |
|
|
613 | (4) |
|
18.2.3 Countercurrent and Cocurrent Flow Models |
|
|
617 | (1) |
|
|
618 | (8) |
|
|
619 | (1) |
|
|
619 | (3) |
|
|
622 | (4) |
|
|
626 | (1) |
|
|
627 | (1) |
|
|
627 | (3) |
|
|
630 | (1) |
Chapter 19 FluidSolid Operations |
|
631 | (14) |
|
19.1 FluidSolid Interaction Models |
|
|
631 | (3) |
|
|
631 | (1) |
|
|
632 | (2) |
|
19.1.3 Chromatographic Processes |
|
|
634 | (1) |
|
|
634 | (6) |
|
|
634 | (3) |
|
|
635 | (2) |
|
19.2.2 Ion-Exchange Equilibrium |
|
|
637 | (3) |
|
|
640 | (4) |
|
19.3.1 Single-Stage Batch Equilibrium |
|
|
640 | (2) |
|
19.3.2 Nonequilibrium Processes |
|
|
642 | (1) |
|
19.3.3 Fixed-Bed Adsorption Columns |
|
|
642 | (2) |
|
|
644 | (1) |
Index |
|
645 | |