Atnaujinkite slapukų nuostatas

El. knyga: Multistage Separation Processes

(University of Houston, Texas, USA)
  • Formatas: 679 pages
  • Išleidimo metai: 15-Oct-2014
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781482230574
Kitos knygos pagal šią temą:
  • Formatas: 679 pages
  • Išleidimo metai: 15-Oct-2014
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781482230574
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The latest edition of a perennial bestseller, Multistage Separation Processes, Fourth Edition provides a clear and thorough presentation of the theoretical foundation, and understanding of the development, evaluation, design, and optimization steps of these processes, from both an academic and industrial perspective. The books emphasis on starting with theoretical models and their role in computer simulation, followed by practical applications, sets it apart from other texts on this topic. The author also highlights the importance of relating fundamental concepts to intuitive understanding of the processes.

See Whats New in the Fourth Edition:











Chapter on fluid-solid operations Expanded development of theories and methods for many applications Adds numerous industry-related examples and end-of-chapter problems Case studies combined with examples Updated and enhanced figures

The book includes a generous number of examples from a wide variety of applications to relate theory to actual results, and to demonstrate the performance of process under varying conditions. The chapter topics follow a logical path that starts with basics and theoretical concepts, and progresses systematically into the various separation processes. Each chapter provides the information relevant to a specific topic, and refers to appropriate chapters in the book as needed. These features combine to give you the understanding required to make the best selections of property prediction and simulation techniques and avoid the cost incurred by the use of improper simulations.

Recenzijos

"[ T]he major value of this book is in its focus on the necessary basic knowledge for explaining the principles of multistage separation processes in a clear schedule with many examples which can be used without difficulties. Engineers in industry may use the book as a quick reference for necessary fundamentals as well as for details in calculation and optimization. Students, especially in fields of chemical engineering and applied chemistry, will find this book most helpful to learn about all the necessary equations and all the calculation methods as explained in a comprehensive manner, and illustrated by numerous useful numerical and illustrative examples." GA Mansoori, Professor of Chemical & Bioengineering, University of Illinois at Chicago

Preface xvii
Author xxi
Chapter 1 Thermodynamics and Phase Equilibria 1(72)
1.1 Thermodynamic Fundamentals
1(8)
1.1.1 Laws of Thermodynamics
2(3)
1.1.1.1 Carnot Engine
2(2)
1.1.1.2 Entropy
4(1)
1.1.2 Thermodynamic Functions
5(2)
1.1.3 Conditions for Equilibrium
7(2)
1.2 PVT Behavior of Fluids
9(12)
1.2.1 Ideal Gas
10(1)
1.2.2 Real Fluids
11(1)
1.2.2.1 Qualitative PVT Behavior of Pure Substances
11(1)
1.2.3 Principle of Corresponding States
12(2)
1.2.4 Equations of State
14(7)
1.2.4.1 van der Waals Equation
14(1)
1.2.4.2 Virial Equation
14(1)
1.2.4.3 Redlich—Kwong Equation
15(1)
1.2.4.4 Soave Equation
16(2)
1.2.4.5 Peng—Robinson Equation
18(1)
1.2.4.6 Benedict—Webb—Rubin (BWR) Equation
19(1)
1.2.4.7 Lee—Kesler—Plocker Equation
19(2)
1.3 Phase Equilibria
21(33)
1.3.1 Fugacity
21(8)
1.3.1.1 Pure Substances
23(1)
1.3.1.2 Mixtures
24(1)
1.3.1.3 Application to Equations of State
25(4)
1.3.2 Phase Equilibrium in an Ideal System
29(3)
1.3.2.1 Raoult's Law
30(1)
1.3.2.2 Binary Ideal Solutions
30(1)
1.3.2.3 Henry's Law
31(1)
1.3.3 Phase Equilibrium in Non-Ideal Systems
32(11)
1.3.3.1 Activity Coefficients
32(3)
1.3.3.2 Thermodynamic Consistency of VLE Data
35(1)
1.3.3.3 Margules Equation
36(1)
1.3.3.4 van Laar Equation
37(1)
1.3.3.5 Wilson Equation
38(1)
1.3.3.6 Non-Random Two-Liquid (NRTL) (Renon) Equation
39(1)
1.3.3.7 Universal Quasi-Chemical (UNIQUAC) Equation
39(4)
1.3.4 Vapor—Liquid Equilibria: Applications
43(9)
1.3.4.1 Azeotropes
48(4)
1.3.5 Liquid—Liquid and Vapor—Liquid—Liquid Equilibria
52(2)
1.3.5.1 Binary Systems
52(1)
1.3.5.2 Ternary Systems
53(1)
1.4 Enthalpy
54(6)
1.4.1 Enthalpy Balances Involving Phase Change
59(1)
1.5 Characterizing Petroleum Fractions
60(6)
1.5.1 True Boiling Point (TBP)
61(1)
1.5.2 Generating Pseudocomponents
61(2)
1.5.3 Laboratory Data
63(1)
1.5.4 Pseudocomponent Properties
63(1)
1.5.5 Blending Streams
64(2)
Nomenclature
66(1)
Subscripts
66(1)
Superscripts
66(1)
Problems
66(6)
References
72(1)
Chapter 2 The Equilibrium Stage 73(64)
2.1 Phase Behavior
74(8)
2.1.1 Degrees of Freedom
74(1)
2.1.2 Phase Diagrams
75(4)
2.1.2.1 The Phase Envelope
75(2)
2.1.2.2 T—Z Diagram
77(1)
2.1.2.3 Y—X Diagram
78(1)
2.1.3 Distribution Coefficients
79(1)
2.1.4 Flash Operations
80(2)
2.1.4.1 Isothermal Flash
81(1)
2.1.4.2 Adiabatic Flash
81(1)
2.1.4.3 Bubble Point
81(1)
2.1.4.4 Dew Point
82(1)
2.1.4.5 General-Type Flash
82(1)
2.2 Performance of the Equilibrium Stage
82(9)
2.2.1 Single-Feed Systems
83(4)
2.2.2 Single-Stage Absorption/Stripping
87(1)
2.2.3 Close Boilers and Azeotropes
88(3)
2.3 Solution Methods
91(46)
2.3.1 Isothermal Flash Method
93(13)
2.3.1.1 Basic Algorithm
93(3)
2.3.1.2 Extension to General Flash Calculations
96(10)
2.3.2 Phase Boundary Calculations
106(8)
2.3.2.1 Bubble Point—Dew Point Calculations for Composition-Independent K-Values
107(3)
2.3.2.2 Iterative Method for Composition-Dependent K-Values
110(1)
2.3.2.3 Simultaneous Method
110(2)
2.3.2.4 Bubble Point Temperature
112(1)
2.3.2.5 Dew Point Temperature
113(1)
2.3.3 Liquid—Liquid and Vapor—Liquid—Liquid Equilibria
114(12)
2.3.3.1 Rigorous VLLE Model
117(1)
2.3.3.2 K-Value Computations
117(2)
2.3.3.3 Application to an Equilibrium Stage
119(2)
2.3.3.4 Iterative Solution
121(1)
2.3.3.5 VLLE in Hydrocarbon—Water Systems
122(4)
Nomenclature
126(1)
Subscripts
127(1)
Superscripts
127(1)
Problems
127(9)
References
136(1)
Chapter 3 Fundamentals of Multistage Separation 137(28)
3.1 Cascaded Stages
138(9)
3.1.1 Graphical Representation
138(1)
3.1.2 Equilibrium Relationships
139(2)
3.1.3 Parameter Relationships
141(6)
3.2 Distillation Basics
147(7)
3.2.1 Temperature Effect on Separation
148(1)
3.2.2 Mathematical Representation
148(1)
3.2.3 Parameter Relationships
149(5)
3.3 Absorption/Stripping Basics
154(6)
3.3.1 Ternary Systems
154(4)
3.3.2 Multistage Absorption
158(1)
3.3.3 Operating Parameters and Mathematical Formulation
159(1)
Nomenclature
160(1)
Subscripts
161(1)
Superscripts
161(1)
Problems
161(4)
Chapter 4 Material Balances in Multi-Component Separation 165(16)
4.1 Mathematical Model
165(1)
4.2 Types of Column Specifications
166(11)
4.2.1 Primary Variable Specifications
166(4)
4.2.2 Derived Variable Specifications
170(3)
4.2.3 General Specifications
173(4)
Nomenclature
177(1)
Subscripts
177(1)
Superscripts
177(1)
Problems
177(4)
Chapter 5 Binary Distillation: Principles 181(36)
5.1 Column Section
181(8)
5.1.1 Development of the Model
182(4)
5.1.1.1 Assumptions and Simplifications
184(2)
5.1.2 Analytical Solution
186(1)
5.1.3 Graphical Representation on the Y—X Diagram
186(3)
5.1.3.1 Constructing Equilibrium Stages
188(1)
5.2 Total Column
189(15)
5.2.1 Mathematical Model
190(5)
5.2.1.1 Rectifying Section Operating Line
191(1)
5.2.1.2 Stripping Section Operating Line
191(1)
5.2.1.3 Feed Stage
191(2)
5.2.1.4 Analytical Solution
193(1)
5.2.1.5 The Description Rule
194(1)
5.2.2 Graphical Solution on the Y—X Diagram
195(8)
5.2.2.1 Representing a Total Column
197(1)
5.2.2.2 Separation and Reflux Ratio Specified
198(1)
5.2.2.3 Distillate Composition, Reflux Ratio, and Number of Stages Specified
199(1)
5.2.2.4 Separation and Number of Stages Specified
199(1)
5.2.2.5 Reflux Ratio, Product Rates, and Number of Stages Specified
199(1)
5.2.2.6 Columns with Multiple Feeds, Side Draws, and Side Heaters/Coolers
199(4)
5.2.2.7 Columns with Stripping Vapor Feed
203(1)
5.2.3 Tray Efficiency
203(1)
5.3 Column Solution with Material and Enthalpy Balances
204(11)
5.3.1 Single-Stage Mass and Energy Balances
205(1)
5.3.2 Binary H—X Diagrams
206(1)
5.3.3 Solving Distillation Columns on the H—X Diagram
207(4)
5.3.4 Other Column Features Represented on the H—X Diagram
211(6)
5.3.4.1 Condenser Types
211(1)
5.3.4.2 Multiple Feeds, Side Draws
212(2)
5.3.4.3 Side Coolers, Heaters
214(1)
5.3.4.4 Tray Efficiency
214(1)
Nomenclature
215(1)
Subscripts
216(1)
Superscripts
216(1)
References
216(1)
Chapter 6 Binary Distillation: Applications 217(30)
6.1 Parameters Affecting Column Performance
217(9)
6.1.1 Effect of Reflux Ratio and Product Rates
218(4)
6.1.1.1 Product Rates
220(2)
6.1.2 Effect of Number of Stages and Feed Location
222(2)
6.1.3 Number of Stages versus Reflux Ratio
224(2)
6.2 Parameter Interactions in Fixed Configuration Columns
226(5)
6.2.1 Column Operable Ranges
227(1)
6.2.2 Feasible Ranges of Product Rates and Reflux Ratios
228(1)
6.2.3 Feasible Ranges of Distillate and Bottoms Compositions
229(1)
6.2.4 Feasible Ranges of Distillate Composition and Reflux Ratio
230(1)
6.2.5 Feasible Ranges of Distillate Composition and Bottoms Rate
230(1)
6.3 Design Strategies Guided by Graphical Representation
231(11)
6.3.1 Analytical Method
241(1)
Nomenclature
242(1)
Subscripts
243(1)
Problems
243(3)
References
246(1)
Chapter 7 Multi-Component Separation: Conventional Distillation 247(20)
7.1 Characteristics of Multi-Component Separation
247(1)
7.2 Factors Affecting Separation
248(3)
7.3 Specifying Column Performance
251(11)
7.3.1 Variation in Dependent Variables with Reflux Ratio and Product Rate
252(4)
7.3.2 Parameter Feasible Ranges
256(6)
7.3.2.1 Product Temperature as the Independent Variable
259(3)
7.4 Number of Trays and Feed Location
262(2)
7.4.1 Minimum Reflux and Minimum Trays
262(1)
7.4.2 Feed Location
262(2)
7.4.3 Effect of Feed Thermal Conditions
264(1)
7.4.4 Rectifiers and Reboiled Strippers
264(1)
Nomenclature
264(1)
Subscripts
265(1)
Problems
265(2)
Chapter 8 Absorption and Stripping 267(18)
8.1 Thermal Effects
267(3)
8.2 Liquid-to-Vapor Ratios
270(3)
8.3 Number of Stages
273(1)
8.4 Performance Specifications
274(3)
8.5 Graphical Representation
277(4)
8.6 Analytical Solution
281(1)
Nomenclature
282(1)
Subscripts
282(1)
Problems
282(3)
Chapter 9 Complex Distillation and Multiple Column Processes 285(38)
9.1 Multiple Feeds
286(13)
9.1.1 Columns with a Reboiler and No Condenser
286(7)
9.1.2 Columns with a Condenser and No Reboiler
293(4)
9.1.3 Columns with a Condenser and a Reboiler
297(2)
9.2 Multiple Products
299(11)
9.2.1 Column Sections
299(1)
9.2.2 Degrees of Freedom
300(3)
9.2.2.1 Modular Representation
300(1)
9.2.2.2 General Column Performance Considerations
301(2)
9.2.3 Partial and Total Condensers
303(7)
9.2.3.1 Performance of Multi-Product Columns
304(6)
9.3 Side Heaters/Coolers and Pumparounds
310(5)
9.3.1 Applications
310(3)
9.3.1.1 Temperature Levels
310(1)
9.3.1.2 Heat of Absorption
311(1)
9.3.1.3 Column Vapor and Liquid Flows
311(2)
9.3.2 Pumparounds
313(2)
9.4 Multiple Column Processes
315(3)
Nomenclature
318(1)
Subscripts
319(1)
Problems
319(3)
Reference
322(1)
Chapter 10 Special Distillation Processes 323(32)
10.1 Azeotropic and Extractive Distillation
323(25)
10.1.1 Separating Azeotropes with Pressure-Sensitive Composition
325(5)
10.1.1.1 Graphical Representation
328(2)
10.1.2 Separating Heterogeneous Minimum-Boiling Azeotropes
330(3)
10.1.2.1 Graphical Representation
331(2)
10.1.3 Separation by Forming an Azeotrope with One Component
333(2)
10.1.4 Separation by Forming Two Binary Azeotropes
335(3)
10.1.5 Separation by Forming a Ternary Azeotrope
338(3)
10.1.6 Separation by Extractive Distillation
341(9)
10.1.6.1 Graphical Representation
342(4)
10.1.6.2 Sample Equilibrium Calculations
346(1)
10.1.6.3 Determining the Number of Stages
347(1)
10.1.6.4 Benzene Recovery Section
348(1)
10.2 Three-Phase Distillation
348(2)
10.3 Reactive Multistage Separation
350(2)
10.3.1 Separation of Close Boilers
351(1)
10.3.2 Esterification of Acetic Acid
351(1)
10.3.3 Other Applications
351(1)
Problems
352(2)
References
354(1)
Chapter 11 Liquid—Liquid Extraction and Supercritical Extraction 355(26)
11.1 Extraction Fundamentals and Terminology
356(4)
11.1.1 Simple Extractors
356(2)
11.1.2 Multiple Feeds
358(1)
11.1.3 Refluxed Extractors
359(1)
11.2 Graphical Representation
360(14)
11.2.1 Generating Equilibrium Diagrams
361(1)
11.2.2 Single-Stage Calculations
361(3)
11.2.3 Countercurrent Multistage Calculations
364(5)
11.2.4 Multiple Feed and Refluxed Extractors
369(2)
11.2.5 LLE Rectilinear Representation
371(10)
11.2.5.1 Analytical Approach
371(3)
11.3 Extraction Equipment
374(1)
11.4 Supercritical Extraction
375(2)
Nomenclature
377(1)
Subscripts
377(1)
Problems
377(3)
Reference
380(1)
Chapter 12 Shortcut Methods 381(54)
12.1 Columns at Total Reflux
381(17)
12.1.1 Model Description
382(1)
12.1.2 Mathematical Representation
383(4)
12.1.3 Degrees of Freedom
387(1)
12.1.4 Solution Methods
388(4)
12.1.4.1 General Specifications
390(2)
12.1.5 Multiple Products
392(6)
12.2 Minimum Reflux Ratio
398(2)
12.3 Column Design and Performance Analysis
400(3)
12.4 Modular Shortcut Methods
403(21)
12.4.1 Column Sections
404(7)
12.4.2 Reduced Model
411(6)
12.4.3 Complex Configurations
417(5)
12.4.3.1 Reboiled Stripper
418(2)
12.4.3.2 Distillation Column with a Partial Condenser
420(1)
12.4.3.3 Multi-Column System
421(1)
12.4.4 Liquid—Liquid Extraction by the Shortcut Column Section Method
422(2)
Nomenclature
424(1)
Subscripts
425(1)
Superscript
425(1)
Problems
425(9)
References
434(1)
Chapter 13 Rigorous Equilibrium Methods 435(54)
13.1 Model Description
435(4)
13.1.1 Model Equations
437(2)
13.2 Steady-State Solution Methods
439(26)
13.2.1 Method of Thiele and Geddes
440(3)
13.2.2 Modified Thiele—Geddes Method
443(5)
13.2.3 Method of Wang and Henke
448(1)
13.2.4 Method of Tomich
448(2)
13.2.5 Method of Naphtali and Sandholm
450(3)
13.2.6 Method of Wang and Oleson
453(1)
13.2.7 Two-Tier Methods
453(11)
13.2.7.1 Inner Loop Property Models
456(1)
13.2.7.2 Outer Loop Property Models
457(1)
13.2.7.3 Two-Tier Algorithm
457(2)
13.2.7.4 Tridiagonal Matrix Algorithm
459(5)
13.2.8 Stage Efficiencies
464(1)
13.3 Chemical Reactions in Multistage Separation
465(2)
13.4 Three-Phase Distillation
467(1)
13.4.1 Hydrocarbon—Water Systems
468(1)
13.5 Liquid—Liquid Extraction
468(1)
13.6 Convergence by Dynamic Iteration
469(5)
13.7 Column Dynamics
474(10)
13.7.1 Dynamic Model Definition
475(2)
13.7.2 Solving the Dynamic Model Equations
477(14)
13.7.2.1 Euler's Method
478(1)
13.7.2.2 Two-Point Implicit Method
479(1)
13.7.2.3 Runge-Kutta Method
480(4)
Nomenclature
484(1)
Subscripts
485(1)
Superscripts
485(1)
Problems
485(1)
References
486(3)
Chapter 14 Tray Hydraulics, Rate-Based Analysis, Tray Efficiency 489(40)
14.1 Tray Hydraulics
491(18)
14.1.1 Types of Trays
492(1)
14.1.1.1 Bubble Cap Trays
493(1)
14.1.1.2 Sieve or Perforated Trays
493(1)
14.1.1.3 Valve Trays
493(1)
14.1.2 Factors Affecting Tray Performance
493(4)
14.1.2.1 Foaming
493(1)
14.1.2.2 Vapor Entrainment
494(1)
14.1.2.3 Liquid Entrainment
494(1)
14.1.2.4 Liquid Gradient
494(1)
14.1.2.5 Weeping
494(1)
14.1.2.6 Flooding
494(1)
14.1.2.7 Pressure Drop
495(1)
14.1.2.8 Operable Ranges
496(1)
14.1.3 Steps in the Analysis of Tray Hydraulics
497(1)
14.1.4 General Tray Hydraulics Correlations
498(16)
14.1.4.1 Tray Diameter
498(3)
14.1.4.2 Tray Pressure Drop
501(2)
14.1.4.3 Downcomer Backup
503(1)
14.1.4.4 Weeping
504(1)
14.1.4.5 Liquid Holdup
504(5)
14.2 Rate-Based Analysis
509(5)
14.3 Tray Efficiency
514(6)
14.3.1 Murphree Efficiency
514(3)
14.3.2 Overall Column Tray Efficiency
517(13)
14.3.2.1 Theoretical Model
517(1)
14.3.2.2 Empirical Methods
518(2)
Nomenclature
520(2)
Subscripts
522(1)
Superscripts
522(1)
Problems
522(6)
References
528(1)
Chapter 15 Packed Columns 529(32)
15.1 Continuous Differential Mass Transfer
530(6)
15.1.1 Nonparallel, Straight Operating Line, and Equilibrium Curve
532(4)
15.2 Rate of Mass Transfer
536(5)
15.2.1 Mass Transfer Correlations
541(1)
15.3 Mass Transfer in Packed Columns
541(7)
15.3.1 General Rate-Based Model
546(2)
15.4 Packed Column Design
548(8)
15.4.1 Estimating the HETP
548(1)
15.4.2 Packed Column Capacity
549(1)
15.4.3 Packed Column Design Outline
550(4)
15.4.3.1 Packed Columns versus Trayed Columns
551(3)
15.4.4 Packed Column Design by the Group Method
554(2)
Nomenclature
556(1)
Subscripts
557(1)
Superscripts
557(1)
Problems
557(2)
References
559(2)
Chapter 16 Control and Optimization of Separation Processes 561(12)
16.1 Multi loop Controllers
562(7)
16.1.1 Pairing the Manipulated and Controlled Variables
562(7)
16.2 Dynamic Predictive Multivariable Control
569(1)
16.2.1 Model-Based Control and Optimization
569(1)
Nomenclature
570(1)
Subscripts
570(1)
Superscripts
570(1)
Problems
570(1)
References
571(2)
Chapter 17 Batch Distillation 573(26)
17.1 Principles of Batch Distillation
574(3)
17.1.1 Effect of Holdup
575(1)
17.1.2 Operating Strategies
575(1)
17.1.2.1 Constant Reflux
575(1)
17.1.2.2 Constant Distillate Composition
576(1)
17.1.2.3 Cycling Operation
576(1)
17.1.3 Conceptual Control and Degrees of Freedom
576(1)
17.2 Solution Methods
577(18)
17.2.1 Graphical and Shortcut Methods: Binary Systems
577(9)
17.2.1.1 Differential Distillation
581(5)
17.2.2 Shortcut Methods: Multi-Component Distillation
586(4)
17.2.3 Rigorous Methods
590(4)
17.2.4 Optimization
594(1)
Nomenclature
595(1)
Subscripts
596(1)
Superscripts
596(1)
Problems
596(2)
References
598(1)
Chapter 18 Membrane Separation Operations 599(32)
18.1 General Membrane Separation Process
599(7)
18.1.1 Possible Consistent Sets of Units
602(4)
18.2 Performance of Membrane Separators
606(12)
18.2.1 Perfect Mixing Model
606(7)
18.2.2 Cross-Flow Model
613(4)
18.2.3 Countercurrent and Cocurrent Flow Models
617(1)
18.3 Applications
618(8)
18.3.1 Gas Permeation
619(1)
18.3.2 Dialysis
619(3)
18.3.3 Reverse Osmosis
622(4)
Nomenclature
626(1)
Subscripts
627(1)
Problems
627(3)
References
630(1)
Chapter 19 Fluid—Solid Operations 631(14)
19.1 Fluid—Solid Interaction Models
631(3)
19.1.1 Adsorbents
631(1)
19.1.2 Ion Exchangers
632(2)
19.1.3 Chromatographic Processes
634(1)
19.2 Phase Equilibrium
634(6)
19.2.1 Isotherms
634(3)
19.2.1.1 Gas Adsorption
635(2)
19.2.2 Ion-Exchange Equilibrium
637(3)
19.3 Applications
640(4)
19.3.1 Single-Stage Batch Equilibrium
640(2)
19.3.2 Nonequilibrium Processes
642(1)
19.3.3 Fixed-Bed Adsorption Columns
642(2)
References
644(1)
Index 645
Fouad M. Khoury