Atnaujinkite slapukų nuostatas

El. knyga: Multivariate Bonferroni-Type Inequalities: Theory and Applications

(Biocheck, Inc., Foster City, California, USA)
  • Formatas: 302 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781466518452
Kitos knygos pagal šią temą:
  • Formatas: 302 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781466518452
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Multivariate Bonferroni-Type Inequalities: Theory and Applications presents a systematic account of research discoveries on multivariate Bonferroni-type inequalities published in the past decade. The emergence of new bounding approaches pushes the conventional definitions of optimal inequalities and demands new insights into linear and Fréchet optimality. The book explores these advances in bounding techniques with corresponding innovative applications. It presents the method of linear programming for multivariate bounds, multivariate hybrid bounds, sub-Markovian bounds, and bounds using Hamilton circuits.





The first half of the book describes basic concepts and methods in probability inequalities. The author introduces the classification of univariate and multivariate bounds with optimality, discusses multivariate bounds using indicator functions, and explores linear programming for bivariate upper and lower bounds.





The second half addresses bounding results and applications of multivariate Bonferroni-type inequalities. The book shows how to construct new multiple testing procedures with probability upper bounds and goes beyond bivariate upper bounds by considering vectorized upper and hybrid bounds. It presents an optimization algorithm for bivariate and multivariate lower bounds and covers vectorized high-dimensional lower bounds with refinements, such as Hamilton-type circuits and sub-Markovian events. The book concludes with applications of probability inequalities in molecular cancer therapy, big data analysis, and more.
List of Figures xi
List of Tables xiii
Preface xv
1 Introduction 1(26)
1.1 Multiple Extreme Values
2(4)
1.1.1 Evaluating the Risk of Multiple Disasters
2(3)
1.1.2 Multivariate Cumulative Distributions
5(1)
1.2 Minimum Effective Dose
6(7)
1.2.1 Minimum Effective Dose of MOTRIN
6(4)
1.2.2 Minimum Effective Dose without Normality
10(1)
1.2.3 Inequality Methods for Behren-Fisher Problem
11(1)
1.2.4 Adjusting Multiplicity for Two or More Substitutable Endpoints
12(1)
1.3 System Reliability
13(5)
1.3.1 Basic Systems
13(2)
1.3.2 Composite Systems
15(3)
1.4 Education Reform and Theoretical Windows
18(4)
1.4.1 Learning Outcomes of Different Pedagogies
19(1)
1.4.2 Therapeutic Windows of a Drug
20(2)
1.5 Ruin Probability and Multiple Premiums
22(2)
1.6 Martingale Inequality and Asset Portfolio
24(3)
2 Fundamentals 27(56)
2.1 Univariate Bonferroni-type Bounds
30(11)
2.1.1 Linear Combination Bounds
30(5)
2.1.2 Non-linear Combination Bounds
35(6)
2.2 Univariate Optimality
41(18)
2.3 Multivariate Bounds
59(15)
2.3.1 Complete Bonferroni Summations
59(2)
2.3.2 Partial Bonferroni Summations
61(3)
2.3.3 Decomposition of Bonferroni Summations
64(3)
2.3.4 Classical Bonferroni Bounds in a Multivariate Setting
67(7)
2.4 Multivariate Optimality
74(9)
3 Multivariate Indicator Functions 83(28)
3.1 Method of Indicator Functions
83(6)
3.2 Moments of Bivariate Indicator Functions
89(10)
3.2.1 Bounds for Joint Probability of Exactly r Occurrences
89(6)
3.2.2 Bounds for Joint Probability of at Least r Occurrences
95(4)
3.3 Factorization of Indicator Functions
99(6)
3.4 A Paradox on Factorization and Binomial Moments
105(6)
3.4.1 Upper Bound Inconsistency
105(5)
3.4.2 Lower Bound Inconsistency
110(1)
4 Multivariate Linear Programming Framework 111(32)
4.1 Linear Programming Upper Bounds
112(11)
4.1.1 Matrix Expression of Upper Frechet Optimality
113(1)
4.1.2 Target Function of Linear Programming
114(2)
4.1.3 Linear Programming Constraints
116(3)
4.1.4 Duality Theorem and Existence of Optimality
119(4)
4.2 Linear Programming Lower Bounds
123(20)
4.2.1 Inconsistency of Linear Programming Lower Bounds
124(5)
4.2.2 Feasible Linear Programming Lower Bounds
129(2)
4.2.3 A Perturbation Device in Linear Programming Optimization
131(3)
4.2.4 An Iteration Process in Linear Programming Optimization
134(9)
5 Bivariate Upper Bounds 143(24)
5.1 Bivariate Factorized Upper Bounds
143(4)
5.2 Bivariate High-degree Upper Bounds
147(3)
5.3 Bivariate Optimal Upper Bounds
150(10)
5.3.1 Linear Optimal Upper Bounds
150(5)
5.3.2 Bivariate Frechet Optimal Upper Bounds
155(5)
5.4 Applications in Multiple Testing
160(7)
5.4.1 Bonferroni Procedure
161(1)
5.4.2 Holm Step-down Procedure
162(1)
5.4.3 Improved Holm Procedure
163(4)
6 Multivariate and Hybrid Upper Bounds 167(26)
6.1 High Dimension Upper Bounds
167(10)
6.2 Hybrid Upper Bounds
177(7)
6.3 Applications in Successive Comparisons
184(9)
6.3.1 Equal Variances
186(1)
6.3.2 Unequal Variances, Behrens-Fisher Problem
186(7)
7 Bivariate Lower Bounds 193(30)
7.1 Bivariate Factorized Lower Bounds
193(10)
7.2 Bivariate High-degree Lower Bounds
203(1)
7.3 Bivariate Optimal Factorized Bounds
204(4)
7.4 Bivariate Optimal Algorithm Bounds
208(13)
7.5 Applications in Seasonal Trend Analysis
221(2)
8 Multivariate and Hybrid Lower Bounds 223(28)
8.1 High Dimension Lower Bounds
223(5)
8.2 Hybrid Lower Bounds
228(21)
8.2.1 Setting of Hybrid Lower Bounds
229(5)
8.2.2 Main Results of Hybrid Lower Bounds
234(10)
8.2.3 Examples of Hybrid Lower Bounds
244(5)
8.3 Applications in Outlier Detection
249(2)
9 Case Studies 251(18)
9.1 Molecular Cancer Therapy
251(2)
9.2 Therapeutic Window
253(3)
9.3 Minimum Effective Dose with Heteroscedasticity
256(2)
9.4 Simultaneous Inference with Binary Data
258(3)
9.5 Post-thrombotic Syndrome and Rang Regression
261(3)
9.6 Vascular Risk Assessment
264(1)
9.7 Big-data Analysis
265(4)
Bibliography 269(14)
Index 283