Atnaujinkite slapukų nuostatas

El. knyga: Multivariate Methods in Epidemiology

(Professor of Public Health (Biostatistics) and Statistics, Department of Epidemiology and Public Health, Yale University School of Medicine)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Holford (biostatistics and statistics, Yale U.) developed this work from a required epidemiology course at Yale called "Topics in Statistical Epidemiology." He presents methods involving the simultaneous analysis of the association between multiple attributes of an individual and the risk of disease, in which single responses are associated with multiple regressor values. Standard computationally direct methods are examined. Formal model fitting is given expanded treatment. Finally, the problems that arise when incorporating aspects of study design into the analysis are explored. Annotation c. Book News, Inc., Portland, OR (booknews.com)

The basis for much of medical public health practice comes from epidemiological research. This text describes current statistical tools that are used to analyze the association between possible risk factors and the actual risk of disease. Beginning with a broad conceptual framework on the disease process, it describes commonly used techniques for analyzing proportions and disease rates. These are then extended to model fitting, and the common threads of logic that bind the two analytic strategies together are revealed. Each chapter provides a descriptive rationale for the method, a worked example using data from a published study, and an exercise that allows the reader to practice the technique. Each chapter also includes an appendix that provides further details on the theoretical underpinnings of the method. Among the topics covered are Mantel-Haenszel methods, rates, survival analysis, logistic regression, and generalized linear models. Methods for incorporating aspects of study design, such as matching, into the analysis are discussed, and guidance is given for determining the power or the sample size requirements of a study. This text will give readers a foundation in applied statistics and the concepts of model fitting to develop skills in the analysis of epidemiological data.

This text for graduate students in epidemiology and biostatistics describes the statistical tools that are currently used in the analysis of proportions and disease rates and on model fitting. Among the topics covered are Mantel-Haenszel methods, survival analysis, logistic regression, and generalized linear models.

Recenzijos

The presentation style is excellent, and the book is full of thought provoking ideas. * Journal of Statistical Computation and Simulation * This book will give readers a foundation in applied statistics and the concepts of model fitting to develop skills in the analysis of epidemiological data. * CAB Abstracts *

Part I Concept and Definitions1. Associations Between Exposure and Disease2. Models for DiseasePart II Non-regression Methods3. Analysis of Proportions4. Analysis of Rates5. Analysis of Time to FailurePart III Regression Methods6. Regression Models for Proprtions7. Defining Regressor Variables8. Parametric Models for Hazard Functions9. Proportional Hazards RegressionPart IV Study Design and New Directions10. Analysis of Matched Studies11. Power and Sample Size Requirements12. Extending Regression ModelsAppendix 1 Theory on Models for DiseaseAppendix 2 Theory on the Analysis of ProportionsAppendix 3 Theory of Analysis RatesAppendix 4 Theory on Analysis of Time to FailureAppendix 5 Theory on Regression Models for ProportionsAppendix 6 Theory on Parametric Models for Hazard FunctionAppendix 7 Theory on Analysis of Matched Studies