Preface |
|
xxi | |
|
Part I Univariate Survival Analysis |
|
|
|
|
3 | (8) |
|
|
3 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.3 Inspecting the Data with R |
|
|
7 | (2) |
|
1.4 Fitting Models with R |
|
|
9 | (1) |
|
1.5 Simulating Data with R |
|
|
9 | (2) |
|
|
11 | (18) |
|
|
11 | (1) |
|
2.2 Some Continuous Survival Distributions |
|
|
12 | (3) |
|
2.2.1 The Exponential Distribution |
|
|
12 | (1) |
|
2.2.2 The Weibull Distribution |
|
|
13 | (1) |
|
2.2.3 The Pareto Distribution |
|
|
13 | (1) |
|
2.2.4 Other Distributions |
|
|
14 | (1) |
|
2.2.5 The Shape of Hazard |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.4 Some Discrete Survival Distributions |
|
|
16 | (1) |
|
2.4.1 The Geometric Distribution |
|
|
16 | (1) |
|
2.4.2 The Negative Binomial Distribution |
|
|
17 | (1) |
|
2.5 Mixed Discrete-Continuous Survival Distributions |
|
|
17 | (3) |
|
2.5.1 From Discrete to Continuous |
|
|
18 | (1) |
|
2.5.2 Rieman--Stieltjes Integrals |
|
|
19 | (1) |
|
|
20 | (2) |
|
2.6.1 Reliability of Systems |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.6.4 Degradation Processes |
|
|
21 | (1) |
|
2.6.5 Stress and Strength |
|
|
22 | (1) |
|
|
22 | (2) |
|
2.7.1 Survival Distributions |
|
|
22 | (1) |
|
2.7.2 Reliability of Systems |
|
|
23 | (1) |
|
2.7.3 Degradation Processes |
|
|
24 | (1) |
|
2.7.4 Stress and Strength |
|
|
24 | (1) |
|
|
24 | (5) |
|
2.8.1 Survival Distributions |
|
|
24 | (2) |
|
2.8.2 Reliability of Systems |
|
|
26 | (1) |
|
2.8.3 Degradation Processes |
|
|
26 | (1) |
|
2.8.4 Stress and Strength |
|
|
26 | (3) |
|
3 Continuous Time-Parametric Inference |
|
|
29 | (28) |
|
3.1 Parametric Inference: Frequentist and Bayesian |
|
|
29 | (3) |
|
3.1.1 Frequentist Approach |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.1.3 Proceed with Caution |
|
|
31 | (1) |
|
|
32 | (7) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
3.2.4 Probabilities of Observation versus Censoring |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (2) |
|
3.2.7 Survival of Breast Cancer Patients |
|
|
38 | (1) |
|
|
39 | (5) |
|
|
40 | (1) |
|
3.3.2 Proportional Hazards (PH) |
|
|
41 | (1) |
|
3.3.3 Accelerated Life (AL) |
|
|
42 | (1) |
|
3.3.4 Proportional Odds (PO) |
|
|
42 | (1) |
|
3.3.5 Mean Residual Life (MRL) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
45 | (1) |
|
|
45 | (1) |
|
3.4.3 Cox--Snell Residuals |
|
|
46 | (1) |
|
3.4.4 Right-Censored Times |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
3.5 Frailty and Random Effects |
|
|
47 | (4) |
|
|
47 | (1) |
|
3.5.2 Recovering the Frailty Distribution |
|
|
48 | (1) |
|
3.5.3 Discrete Random Effects and Frailty |
|
|
49 | (2) |
|
3.5.4 Accommodating Zero Frailty |
|
|
51 | (1) |
|
3.6 Time-Dependent Covariates |
|
|
51 | (2) |
|
|
53 | (2) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
55 | (1) |
|
|
55 | (2) |
|
4 Continuous Time: Non- and Semi-Parametric Methods |
|
|
57 | (20) |
|
|
57 | (5) |
|
4.1.1 The Kaplan--Meier Estimator |
|
|
57 | (2) |
|
|
59 | (1) |
|
4.1.3 The Integrated and Cumulative Hazard Functions |
|
|
60 | (1) |
|
4.1.4 Interval-Censored Data |
|
|
60 | (2) |
|
4.2 Explanatory Variables |
|
|
62 | (3) |
|
4.2.1 Cox's Proportional Hazards Model |
|
|
62 | (1) |
|
4.2.2 Cox's Partial Likelihood |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (4) |
|
|
65 | (1) |
|
|
66 | (1) |
|
4.3.3 The Baseline Survivor Function |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.3.5 Schoenfeld Residuals |
|
|
68 | (1) |
|
4.3.6 Time-Dependent Covariates |
|
|
68 | (1) |
|
4.3.7 Interval-Censored Data |
|
|
69 | (1) |
|
4.4 Task Completion Times |
|
|
69 | (3) |
|
4.5 Accelerated Life Models |
|
|
72 | (3) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
4.6.4 Accelerated Life Models |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
4.7.2 Accelerated Life Models |
|
|
76 | (1) |
|
|
77 | (24) |
|
5.1 Random Samples: Parametric Methods |
|
|
77 | (4) |
|
5.1.1 Geometric Lifetimes |
|
|
77 | (1) |
|
|
78 | (2) |
|
5.1.3 Probabilities of Observation versus Censoring |
|
|
80 | (1) |
|
5.2 Random Samples: Non- and Semi-Parametric Estimation |
|
|
81 | (3) |
|
|
82 | (1) |
|
5.2.2 Large-Sample Theory |
|
|
83 | (1) |
|
5.3 Explanatory Variables |
|
|
84 | (6) |
|
5.3.1 Likelihood Function |
|
|
84 | (1) |
|
5.3.2 Geometric Waiting Times |
|
|
85 | (1) |
|
|
85 | (2) |
|
5.3.4 Proportional Hazards |
|
|
87 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (1) |
|
5.4 Interval-Censored Data |
|
|
90 | (2) |
|
5.4.1 Cancer Survival Data |
|
|
90 | (2) |
|
5.5 Frailty and Random Effects |
|
|
92 | (3) |
|
5.5.1 Geometric Distribution |
|
|
92 | (1) |
|
|
93 | (1) |
|
5.5.3 Beta-Geometric Distribution |
|
|
93 | (1) |
|
5.5.4 Cycles to Pregnancy |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (2) |
|
|
95 | (1) |
|
5.6.2 Explanatory Variables |
|
|
96 | (1) |
|
5.6.3 Gamma and Beta Distributions |
|
|
96 | (1) |
|
|
97 | (4) |
|
|
97 | (4) |
|
Part II Multivariate Survival Analysis |
|
|
|
6 Multivariate Data and Distributions |
|
|
101 | (10) |
|
|
101 | (4) |
|
6.1.1 Repeated Response Times |
|
|
101 | (1) |
|
6.1.2 Paired Response Times |
|
|
102 | (1) |
|
6.1.3 Lengths and Strengths of Fibres |
|
|
102 | (1) |
|
6.1.4 Household Energy Usage |
|
|
102 | (3) |
|
6.2 Multivariate Survival Distributions |
|
|
105 | (3) |
|
6.2.1 Joint and Marginal Distributions |
|
|
105 | (1) |
|
6.2.2 Conditional Distributions |
|
|
105 | (1) |
|
6.2.3 Dependence and Association |
|
|
105 | (1) |
|
6.2.4 Hazard Functions and Failure Rates |
|
|
106 | (1) |
|
6.2.5 Gumbel's Bivariate Exponential |
|
|
107 | (1) |
|
|
108 | (1) |
|
6.3.1 Joint and Marginal Distributions |
|
|
108 | (1) |
|
6.3.2 Dependence and Association |
|
|
108 | (1) |
|
|
109 | (2) |
|
6.4.1 Joint and Marginal Distributions |
|
|
109 | (1) |
|
6.4.2 Dependence and Association |
|
|
109 | (2) |
|
7 Some Models and Methods |
|
|
111 | (10) |
|
7.1 The Multivariate Log-Normal Distribution |
|
|
111 | (1) |
|
|
112 | (2) |
|
7.2.1 Household Energy Usage |
|
|
112 | (1) |
|
7.2.2 Repeated Response Times |
|
|
113 | (1) |
|
7.3 Bivariate Exponential |
|
|
114 | (1) |
|
7.3.1 Discrete-Time Version |
|
|
114 | (1) |
|
7.4 Bivariate Exponential |
|
|
115 | (1) |
|
7.4.1 Discrete-Time Version |
|
|
116 | (1) |
|
7.5 Some Other Bivariate Distributions |
|
|
116 | (2) |
|
7.5.1 Block and Basu (1974) |
|
|
116 | (1) |
|
7.5.2 Lawrance and Lewis (1983) |
|
|
116 | (1) |
|
7.5.3 Arnold and Brockett (1983) |
|
|
117 | (1) |
|
|
117 | (1) |
|
7.5.5 Yet More Distributions |
|
|
117 | (1) |
|
7.6 Non- and Semi-Parametric Methods |
|
|
118 | (2) |
|
|
120 | (1) |
|
8 Frailty, Random Effects, and Copulas |
|
|
121 | (18) |
|
8.1 Frailty: Construction |
|
|
121 | (1) |
|
8.2 Some Frailty-Generated Distributions |
|
|
122 | (5) |
|
|
122 | (1) |
|
8.2.2 Multivariate Weibull |
|
|
123 | (1) |
|
|
124 | (1) |
|
8.2.4 Multivariate Beta-Geometric |
|
|
125 | (1) |
|
8.2.5 Multivariate Gamma-Poisson |
|
|
126 | (1) |
|
8.2.6 Marshall--Olkin Families |
|
|
126 | (1) |
|
|
127 | (4) |
|
8.3.1 Paired Response Times |
|
|
127 | (2) |
|
8.3.2 Household Energy Usage |
|
|
129 | (1) |
|
8.3.3 Cycles to Pregnancy |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (2) |
|
8.7.1 Frailty-Generated Distributions |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (22) |
|
9.1 Pure Frailty Models: Applications |
|
|
139 | (4) |
|
9.1.1 Lengths and Strengths of Fibres |
|
|
140 | (1) |
|
|
141 | (2) |
|
9.2 Models with Serial Correlation: Application |
|
|
143 | (2) |
|
9.2.1 Repeated Response Times |
|
|
144 | (1) |
|
|
145 | (1) |
|
9.4 Discrete Time: Applications |
|
|
146 | (6) |
|
|
146 | (1) |
|
9.4.2 Beta-Geometric Model |
|
|
147 | (1) |
|
|
147 | (2) |
|
9.4.4 Antenatal Knowledge |
|
|
149 | (3) |
|
9.5 Milestones: Applications |
|
|
152 | (4) |
|
9.5.1 Educational Development |
|
|
152 | (1) |
|
9.5.2 Pill Dissolution Rates |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
154 | (2) |
|
|
156 | (5) |
|
9.6.1 Bird Recapture Data |
|
|
156 | (1) |
|
9.6.2 Some Background for the Bivariate Beta Distribution |
|
|
156 | (1) |
|
|
157 | (1) |
|
9.6.4 Binomial Waiting Times |
|
|
158 | (1) |
|
|
158 | (3) |
|
|
161 | (18) |
|
10.1 Some Recurrence Data |
|
|
161 | (2) |
|
|
163 | (2) |
|
10.3 Basic Recurrence Processes |
|
|
165 | (3) |
|
|
165 | (1) |
|
|
166 | (1) |
|
10.3.3 Recurrence of Medical Condition |
|
|
166 | (1) |
|
|
167 | (1) |
|
10.4 More Elaborate Models |
|
|
168 | (1) |
|
|
168 | (1) |
|
10.4.2 Intensity Functions |
|
|
168 | (1) |
|
10.5 Other Fields of Application |
|
|
169 | (2) |
|
10.5.1 Repair and Warranty Data |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
10.5.4 Alternating Periods |
|
|
170 | (1) |
|
|
171 | (3) |
|
10.6.1 Continuous Time: Poisson Process |
|
|
171 | (1) |
|
|
172 | (1) |
|
10.6.3 Multivariate Negative Binomial |
|
|
172 | (2) |
|
|
174 | (2) |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (24) |
|
|
179 | (4) |
|
|
179 | (1) |
|
|
180 | (1) |
|
11.1.3 Hidden Markov Chains |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
11.3 Wear and Tear and Lack of Care |
|
|
184 | (1) |
|
|
185 | (5) |
|
11.4.1 Compound Poisson Process |
|
|
186 | (2) |
|
11.4.2 Compound Birth Process |
|
|
188 | (1) |
|
|
188 | (2) |
|
11.4.4 Customer Lifetime Value |
|
|
190 | (1) |
|
11.5 Some Other Models and Applications |
|
|
190 | (4) |
|
11.5.1 Empirical Equation Models |
|
|
190 | (2) |
|
11.5.2 Models for the Stress Process |
|
|
192 | (1) |
|
11.5.3 Stress-Strength Models |
|
|
193 | (1) |
|
11.5.4 Other Models and Applications |
|
|
193 | (1) |
|
|
194 | (4) |
|
|
194 | (1) |
|
|
195 | (2) |
|
11.6.3 Cumulative Damage Models |
|
|
197 | (1) |
|
11.6.4 Compound Poisson Process |
|
|
197 | (1) |
|
11.6.5 Compound Birth Process |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (5) |
|
|
198 | (1) |
|
|
198 | (1) |
|
11.7.3 Cumulative Damage Models |
|
|
199 | (1) |
|
11.7.4 Compound Poisson Process |
|
|
199 | (1) |
|
11.7.5 Compound Birth Process |
|
|
199 | (4) |
|
|
|
12 Continuous Failure Times and Their Causes |
|
|
203 | (12) |
|
12.1 Some Small Data Sets |
|
|
203 | (1) |
|
|
203 | (1) |
|
12.1.2 Catheter Infection |
|
|
203 | (1) |
|
12.1.3 Superalloy Testing |
|
|
204 | (1) |
|
12.2 Basic Probability Functions: Continuous Time |
|
|
204 | (3) |
|
12.2.1 Exponential Mixture |
|
|
206 | (1) |
|
|
207 | (2) |
|
12.3.1 Exponential Mixture |
|
|
207 | (1) |
|
|
208 | (1) |
|
12.3.3 Weibull Sub-Hazards |
|
|
208 | (1) |
|
12.4 Proportional Hazards |
|
|
209 | (2) |
|
12.4.1 Weibull Sub-Hazards |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
12.5.1 Proportional Hazards (PH) |
|
|
211 | (1) |
|
12.5.2 Accelerated Life (AL) |
|
|
211 | (1) |
|
12.5.3 Proportional Odds (PO) |
|
|
211 | (1) |
|
12.5.4 Mean Residual Life (MRL) |
|
|
212 | (1) |
|
|
212 | (2) |
|
12.6.1 Exponential Mixture |
|
|
212 | (2) |
|
|
214 | (1) |
|
|
214 | (1) |
|
13 Continuous Time: Parametric Inference |
|
|
215 | (20) |
|
13.1 The Likelihood for Competing Risks |
|
|
215 | (3) |
|
13.1.1 Forms of the Likelihood Function |
|
|
215 | (1) |
|
13.1.2 Uncertainty about C |
|
|
216 | (1) |
|
13.1.3 Uncertainty about T |
|
|
216 | (1) |
|
13.1.4 Maximum Likelihood Estimates |
|
|
217 | (1) |
|
13.1.4.1 Weibull Sub-Hazards |
|
|
217 | (1) |
|
13.1.4.2 Exponential Mixture |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
219 | (2) |
|
|
221 | (5) |
|
|
221 | (1) |
|
13.4.2 Survival Times of Mice |
|
|
222 | (2) |
|
13.4.3 Fracture Toughness |
|
|
224 | (1) |
|
13.4.4 Length of Hospital Stay |
|
|
225 | (1) |
|
13.5 Some Examples of Hazard Modelling |
|
|
226 | (5) |
|
13.5.1 Exponential Mixture |
|
|
226 | (1) |
|
13.5.2 Gumbel's Bivariate Exponential |
|
|
227 | (1) |
|
13.5.3 Bivariate Makeham Distribution |
|
|
227 | (1) |
|
13.5.4 Kimber and Grace: The Dream Team |
|
|
227 | (2) |
|
|
229 | (2) |
|
|
231 | (2) |
|
|
233 | (2) |
|
|
233 | (2) |
|
|
235 | (18) |
|
14.1 Basic Probability Functions |
|
|
235 | (3) |
|
|
235 | (1) |
|
14.1.2 Gumbel's Bivariate Exponential |
|
|
236 | (2) |
|
|
238 | (4) |
|
14.2.1 Freund's Bivariate Exponential |
|
|
238 | (1) |
|
|
238 | (1) |
|
14.2.3 Multivariate Burr (MB) |
|
|
239 | (1) |
|
14.2.4 Multivariate Weibull (MW) |
|
|
239 | (2) |
|
14.2.5 A Stochastic Process Model |
|
|
241 | (1) |
|
14.2.6 Other Applications |
|
|
241 | (1) |
|
|
242 | (2) |
|
14.3.1 Latent Failure Times versus Hazard Functions |
|
|
242 | (1) |
|
14.3.2 Marginals versus Sub-Distributions |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (3) |
|
|
245 | (2) |
|
14.4.2 Other Applications |
|
|
247 | (1) |
|
14.5 The Makeham Assumption |
|
|
247 | (2) |
|
14.5.1 Proportional Hazards |
|
|
248 | (1) |
|
14.6 A Risk-Removal Model |
|
|
249 | (1) |
|
14.7 A Degradation Process |
|
|
250 | (1) |
|
|
251 | (1) |
|
14.7.2 Compound Poisson and Compound Birth Processes |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
15 Continuous Time: Non- and Semi-Parametric Methods |
|
|
253 | (12) |
|
15.1 The Kaplan--Meier Estimator |
|
|
253 | (4) |
|
15.1.1 Survival Times of Mice |
|
|
255 | (2) |
|
|
257 | (2) |
|
15.3 Proportional Hazards and Partial Likelihood |
|
|
259 | (2) |
|
15.3.1 The Proportional Hazards (PH) Model |
|
|
259 | (1) |
|
15.3.2 The Partial Likelihood |
|
|
259 | (1) |
|
|
260 | (1) |
|
15.4 The Baseline Survivor Functions |
|
|
261 | (1) |
|
15.5 Other Methods and Applications |
|
|
262 | (3) |
|
|
265 | (22) |
|
16.1 Basic Probability Functions |
|
|
265 | (2) |
|
|
266 | (1) |
|
16.2 Latent Lifetimes and Sub-Odds Functions |
|
|
267 | (4) |
|
|
268 | (3) |
|
|
271 | (3) |
|
16.3.1 Discrete Version of Gumbel |
|
|
271 | (1) |
|
16.3.2 Discrete Version of Freund |
|
|
272 | (1) |
|
16.3.3 Discrete Version of Marshall--Olkin |
|
|
273 | (1) |
|
|
273 | (1) |
|
16.4 Parametric Estimation |
|
|
274 | (3) |
|
16.4.1 Likelihood Function |
|
|
275 | (1) |
|
16.4.2 Discrete Marshall--Olkin |
|
|
275 | (1) |
|
|
276 | (1) |
|
16.5 Non-Parametric Estimation from Random Samples |
|
|
277 | (6) |
|
|
279 | (2) |
|
16.5.2 Interval-Censored Data |
|
|
281 | (1) |
|
16.5.3 Superalloy Testing |
|
|
281 | (2) |
|
16.6 Asymptotic Distribution of Non-Parametric Estimators |
|
|
283 | (1) |
|
16.7 Proportional Odds and Partial Likelihood |
|
|
284 | (2) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
17 Latent Lifetimes: Identifiability Crises |
|
|
287 | (24) |
|
17.1 The Cox--Tsiatis Impasse |
|
|
287 | (3) |
|
|
287 | (2) |
|
17.1.2 Gumbel's Bivariate Exponential |
|
|
289 | (1) |
|
17.2 More General Identifiablility Results |
|
|
290 | (6) |
|
|
290 | (1) |
|
|
291 | (4) |
|
17.2.3 The Marshall--Olkin Distribution |
|
|
295 | (1) |
|
|
296 | (3) |
|
|
299 | (3) |
|
|
301 | (1) |
|
17.4.2 Discrete Marshall--Olkin |
|
|
301 | (1) |
|
17.4.3 A Test for Independence of Risks |
|
|
301 | (1) |
|
|
302 | (2) |
|
17.5.1 Heckman and Honore's Theorem |
|
|
302 | (1) |
|
17.5.2 Gumbel's Bivariate Exponential |
|
|
303 | (1) |
|
17.6 Censoring of Survival Data |
|
|
304 | (2) |
|
17.7 Parametric Identifiability |
|
|
306 | (5) |
|
Part IV Counting Processes in Survival Analysis |
|
|
|
|
311 | (12) |
|
|
311 | (1) |
|
18.2 Conditional Expectation |
|
|
312 | (2) |
|
|
314 | (1) |
|
18.4 Martingales in Discrete Time |
|
|
315 | (2) |
|
|
316 | (1) |
|
18.5 Martingales in Continuous Time |
|
|
317 | (2) |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
323 | (8) |
|
|
323 | (2) |
|
19.1.1 The Intensity Process |
|
|
323 | (1) |
|
19.1.2 Parametric Likelihood Function |
|
|
324 | (1) |
|
19.2 Independent Lifetimes |
|
|
325 | (1) |
|
|
326 | (2) |
|
|
328 | (3) |
|
20 Non- and Semi-Parametric Methods |
|
|
331 | (10) |
|
|
331 | (2) |
|
|
333 | (1) |
|
20.3 Large-Sample Results |
|
|
334 | (1) |
|
|
334 | (1) |
|
20.3.2 Asymptotic Normality |
|
|
334 | (1) |
|
20.3.3 Confidence Intervals |
|
|
334 | (1) |
|
|
335 | (3) |
|
20.4.1 Single-Sample Case |
|
|
335 | (1) |
|
|
336 | (2) |
|
|
338 | (3) |
|
20.5.1 Intensity Models and Time-Dependent Covariates |
|
|
338 | (1) |
|
20.5.2 Proportional Hazards Model |
|
|
339 | (1) |
|
20.5.3 Martingale Residuals |
|
|
339 | (2) |
Appendix A Terms, Notations, and Abbreviations |
|
341 | (2) |
Appendix B Basic Likelihood Methods |
|
343 | (4) |
Appendix C Some Theory for Partial Likelihood |
|
347 | (4) |
Appendix D Numerical Optimisation of Functions |
|
351 | (4) |
References |
|
355 | (20) |
Epilogue to First Edition |
|
375 | (2) |
Index |
|
377 | |