|
|
xiii | |
|
|
xvii | |
Preface |
|
xix | |
|
|
xxiii | |
|
|
1 | (74) |
|
1 Music Data Mining: An Introduction |
|
|
3 | (40) |
|
|
|
|
4 | (3) |
|
1.2 An Introduction to Data Mining |
|
|
7 | (6) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.2.3 Data Mining Tasks and Algorithms |
|
|
10 | (1) |
|
1.2.3.1 Data Visualization |
|
|
10 | (1) |
|
1.2.3.2 Association Mining |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.3.6 Similarity Search |
|
|
12 | (1) |
|
|
13 | (16) |
|
|
13 | (1) |
|
1.3.2 Music Data Management |
|
|
14 | (2) |
|
1.3.3 Music Visualization |
|
|
16 | (1) |
|
1.3.4 Music Information Retrieval |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (5) |
|
|
25 | (1) |
|
1.3.9 Music Summarization |
|
|
26 | (1) |
|
1.3.10 Advanced Music Data Mining Tasks |
|
|
27 | (2) |
|
|
29 | (14) |
|
|
31 | (12) |
|
2 Audio Feature Extraction |
|
|
43 | (32) |
|
|
2.1 Audio Representations |
|
|
44 | (7) |
|
2.1.1 The Short-Time Fourier Transform |
|
|
45 | (5) |
|
2.1.2 Filter banks, Wavelets, and Other Time-Frequency Representations |
|
|
50 | (1) |
|
2.2 Timbral Texture Features |
|
|
51 | (6) |
|
|
51 | (1) |
|
2.2.2 Mel-Frequency Cepstral Coefficients |
|
|
52 | (1) |
|
2.2.3 Other Timbral Features |
|
|
52 | (1) |
|
2.2.4 Temporal Summarization |
|
|
53 | (3) |
|
2.2.5 Song-Level Modeling |
|
|
56 | (1) |
|
|
57 | (7) |
|
2.3.1 Onset Strength Signal |
|
|
59 | (1) |
|
2.3.2 Tempo Induction and Beat Tracking |
|
|
60 | (2) |
|
2.3.3 Rhythm Representations |
|
|
62 | (2) |
|
2.4 Pitch/Harmony Features |
|
|
64 | (1) |
|
|
65 | (1) |
|
2.6 Musical Genre Classification of Audio Signals |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (6) |
|
|
69 | (6) |
|
|
75 | (142) |
|
|
77 | (18) |
|
|
|
|
|
78 | (3) |
|
3.1.1 The Stabilized Auditory Image |
|
|
80 | (1) |
|
|
81 | (4) |
|
3.2.1 Pole-Zero Filter Cascade |
|
|
81 | (2) |
|
3.2.2 Image Stabilization |
|
|
83 | (1) |
|
|
83 | (1) |
|
3.2.4 Vector Quantization |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (6) |
|
|
85 | (4) |
|
|
89 | (2) |
|
|
91 | (4) |
|
|
92 | (3) |
|
|
95 | (40) |
|
Jayme Garcia Arnal Barbedo |
|
|
|
96 | (1) |
|
|
97 | (5) |
|
4.2.1 Pitched and Unpitched Instruments |
|
|
97 | (1) |
|
|
97 | (3) |
|
4.2.3 Number of Instruments |
|
|
100 | (2) |
|
|
102 | (9) |
|
4.3.1 Signal Segmentation |
|
|
102 | (1) |
|
|
103 | (2) |
|
4.3.3 Classification Procedure |
|
|
105 | (1) |
|
4.3.3.1 Classification Systems |
|
|
105 | (1) |
|
4.3.3.2 Hierarchical and Flat Classifications |
|
|
106 | (2) |
|
4.3.4 Analysis and Presentation of Results |
|
|
108 | (3) |
|
|
111 | (14) |
|
|
111 | (8) |
|
|
119 | (6) |
|
4.4.3 Other Relevant Work |
|
|
125 | (1) |
|
|
125 | (10) |
|
|
127 | (8) |
|
5 Mood and Emotional Classification |
|
|
135 | (34) |
|
|
|
5.1 Using Emotions and Moods for Music Retrieval |
|
|
136 | (1) |
|
5.2 Emotion and Mood: Taxonomies, Communication, and Induction |
|
|
137 | (9) |
|
5.2.1 What Is Emotion, What Is Mood? |
|
|
137 | (1) |
|
5.2.2 A Hierarchical Model of Emotions |
|
|
138 | (1) |
|
5.2.3 Labeling Emotion and Mood with Words and Its Issues |
|
|
138 | (2) |
|
5.2.4 Adjective Grouping and the Hevner Diagram |
|
|
140 | (1) |
|
5.2.5 Multidimensional Organizations of Emotion |
|
|
140 | (2) |
|
5.2.5.1 Three and Higher Dimensional Diagrams |
|
|
142 | (3) |
|
5.2.6 Communication and Induction of Emotion and Mood |
|
|
145 | (1) |
|
5.3 Obtaining Emotion and Mood Labels |
|
|
146 | (4) |
|
5.3.1 A Small Number of Human Labelers |
|
|
146 | (1) |
|
5.3.2 A Large Number of Labelers |
|
|
147 | (1) |
|
5.3.3 Mood Labels Obtained from Community Tags |
|
|
148 | (1) |
|
5.3.3.1 MIREX Mood Classification Data |
|
|
148 | (1) |
|
5.3.3.2 Latent Semantic Analysis on Mood Tags |
|
|
149 | (1) |
|
5.3.3.3 Screening by Professional Musicians |
|
|
150 | (1) |
|
5.4 Examples of Music Mood and Emotion Classification |
|
|
150 | (8) |
|
5.4.1 Mood Classfication Using Acoustic Data Analysis |
|
|
150 | (1) |
|
5.4.2 Mood Classification Based on Lyrics |
|
|
151 | (2) |
|
5.4.3 Mixing Audio and Tag Features for Mood Classification |
|
|
153 | (1) |
|
5.4.4 Mixing Audio and Lyrics for Mood Classification |
|
|
154 | (2) |
|
5.4.4.1 Further Exploratory Investigations with More Complex Feature Sets |
|
|
156 | (1) |
|
5.4.5 Exploration of Acoustic Cues Related to Emotions |
|
|
157 | (1) |
|
5.4.6 Prediction of Emotion Model Parameters |
|
|
157 | (1) |
|
|
158 | (11) |
|
|
160 | (9) |
|
6 Zipf's Law, Power Laws, and Music Aesthetics |
|
|
169 | (48) |
|
|
|
|
|
|
|
171 | (1) |
|
|
171 | (1) |
|
6.2 Music Information Retrieval |
|
|
172 | (3) |
|
6.2.1 Genre and Author Classification |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
6.2.2 Other Aesthetic Music Classification Tasks |
|
|
174 | (1) |
|
6.3 Quantifying Aesthetics |
|
|
175 | (3) |
|
6.4 Zipf's Law and Power Laws |
|
|
178 | (4) |
|
|
178 | (3) |
|
6.4.2 Music and Zipf's Law |
|
|
181 | (1) |
|
|
182 | (4) |
|
6.5.1 Symbolic (MIDI) Metrics |
|
|
182 | (1) |
|
|
182 | (1) |
|
6.5.1.2 Higher-Order Metrics |
|
|
182 | (2) |
|
6.5.1.3 Local Variability Metrics |
|
|
184 | (1) |
|
6.5.2 Timbre (Audio) Metrics |
|
|
184 | (1) |
|
|
184 | (1) |
|
6.5.2.2 Signal Higher-Order Metrics |
|
|
185 | (1) |
|
6.5.2.3 Intrafrequency Higher-Order Metrics |
|
|
185 | (1) |
|
6.5.2.4 Interfrequency Higher-Order Metrics |
|
|
185 | (1) |
|
6.6 Automated Classification Tasks |
|
|
186 | (10) |
|
6.6.1 Popularity Prediction Experiment |
|
|
187 | (1) |
|
6.6.1.1 ANN Classification |
|
|
187 | (4) |
|
6.6.2 Style Classification Experiments |
|
|
191 | (1) |
|
6.6.2.1 Multiclass Classification |
|
|
191 | (1) |
|
6.6.2.2 Multiclass Classification (Equal Class Sizes) |
|
|
192 | (1) |
|
6.6.2.3 Binary-Class Classification (Equal Class Sizes) |
|
|
193 | (1) |
|
6.6.3 Visualization Experiment |
|
|
194 | (1) |
|
6.6.3.1 Self-Organizing Maps |
|
|
194 | (2) |
|
6.7 Annonique A Music Similarity Engine |
|
|
196 | (1) |
|
6.8 Psychological Experiments |
|
|
197 | (12) |
|
6.8.1 Earlier Assessment and Validation |
|
|
198 | (1) |
|
6.8.1.1 Artificial Neural Network Experiment |
|
|
199 | (1) |
|
6.8.1.2 Evolutionary Computation Experiment |
|
|
199 | (1) |
|
6.8.1.3 Music Information Retrieval Experiment |
|
|
199 | (1) |
|
6.8.2 Annonique Evaluation Experiments |
|
|
200 | (1) |
|
|
200 | (1) |
|
6.8.2.2 Results Psychological Ratings |
|
|
201 | (2) |
|
6.8.2.3 Results---Physiological Measures |
|
|
203 | (1) |
|
|
204 | (4) |
|
|
208 | (1) |
|
|
209 | (8) |
|
|
210 | (1) |
|
|
211 | (6) |
|
III Social Aspects of Music Data Mining |
|
|
217 | (86) |
|
7 Web-Based and Community-Based Music Information Extraction |
|
|
219 | (32) |
|
|
7.1 Approaches to Extract Information about Music |
|
|
221 | (8) |
|
|
222 | (3) |
|
|
225 | (2) |
|
7.1.3 Band Members and Instrumentation |
|
|
227 | (1) |
|
7.1.4 Album Cover Artwork |
|
|
228 | (1) |
|
7.2 Approaches to Similarity Measurement |
|
|
229 | (12) |
|
7.2.1 Text-Based Approaches |
|
|
229 | (1) |
|
7.2.1.1 Term Profiles from Web Pages |
|
|
230 | (2) |
|
7.2.1.2 Collaborative Tags |
|
|
232 | (2) |
|
|
234 | (1) |
|
7.2.2 Co-Occurrence-Based Approaches |
|
|
235 | (1) |
|
7.2.2.1 Web-Based Co-Occurrences and Page Counts |
|
|
235 | (2) |
|
|
237 | (2) |
|
7.2.2.3 Peer-to-Peer Networks |
|
|
239 | (2) |
|
|
241 | (10) |
|
|
242 | (1) |
|
|
242 | (9) |
|
8 Indexing Music with Tags |
|
|
251 | (30) |
|
|
|
251 | (1) |
|
|
252 | (3) |
|
|
252 | (2) |
|
|
254 | (1) |
|
8.3 Sources of Tag-Based Music Information |
|
|
255 | (6) |
|
8.3.1 Conducting a Survey |
|
|
256 | (1) |
|
8.3.2 Harvesting Social Tags |
|
|
257 | (1) |
|
8.3.3 Playing Annotation Games |
|
|
258 | (1) |
|
8.3.4 Mining Web Documents |
|
|
258 | (1) |
|
8.3.5 Autotagging Audio Content |
|
|
259 | (1) |
|
|
259 | (2) |
|
8.4 Comparing Sources of Music Information |
|
|
261 | (6) |
|
8.4.1 Social Tags: Last.fm |
|
|
262 | (2) |
|
|
264 | (1) |
|
8.4.3 Web Documents: Weight-Based Relevance Scoring |
|
|
264 | (2) |
|
8.4.4 Autotagging: Supervised Multiclass Labeling |
|
|
266 | (1) |
|
|
266 | (1) |
|
8.5 Combining Sources of Music Information |
|
|
267 | (7) |
|
8.5.1 Ad-Hoc Combination Approaches |
|
|
268 | (2) |
|
8.5.2 Learned Combination Approaches |
|
|
270 | (3) |
|
|
273 | (1) |
|
8.6 Meerkat: A Semantic Music Discovery Engine |
|
|
274 | (7) |
|
|
275 | (2) |
|
|
277 | (1) |
|
|
277 | (4) |
|
9 Human Computation for Music Classification |
|
|
281 | (22) |
|
|
|
281 | (2) |
|
9.2 TagATune: A Music Tagging Game |
|
|
283 | (8) |
|
9.2.1 Input-Agreement Mechanism |
|
|
283 | (2) |
|
9.2.2 Fun Game, Noisy Data |
|
|
285 | (1) |
|
9.2.3 A Platform for Collecting Human Evaluation |
|
|
286 | (1) |
|
9.2.3.1 The TagATune Metric |
|
|
287 | (1) |
|
9.2.3.2 MIREX Special TagATune Evaluation |
|
|
288 | (2) |
|
9.2.3.3 Strength and Weaknesses |
|
|
290 | (1) |
|
9.3 Learning to Tag Using TagATune Data |
|
|
291 | (8) |
|
9.3.1 A Brief Introduction to Topic Models |
|
|
292 | (1) |
|
9.3.2 Leveraging Topic Models for Music Tagging |
|
|
293 | (1) |
|
9.3.2.1 Experimental Results |
|
|
294 | (5) |
|
|
299 | (4) |
|
|
300 | (3) |
|
|
303 | (44) |
|
|
305 | (22) |
|
|
10.1 An Inextricable Maze? |
|
|
306 | (5) |
|
10.1.1 Music Psychology and the Exposure Effect |
|
|
307 | (2) |
|
10.1.2 The Broadcaster/Listener Entanglement |
|
|
309 | (1) |
|
|
309 | (1) |
|
10.1.4 Modeling the Life Span of Hits |
|
|
310 | (1) |
|
10.2 In Search of the Features of Popularity |
|
|
311 | (3) |
|
10.2.1 Features: The Case of Birds |
|
|
312 | (1) |
|
10.2.2 The Ground-Truth Issue |
|
|
313 | (1) |
|
10.2.3 Audio and Lyrics Features: The Initial Claim |
|
|
314 | (1) |
|
|
314 | (7) |
|
10.3.1 Generic Audio Features |
|
|
315 | (1) |
|
10.3.2 Specific Audio Features |
|
|
315 | (1) |
|
|
316 | (1) |
|
10.3.4 The HiFind Database |
|
|
316 | (1) |
|
10.3.4.1 A Controlled Categorization Process |
|
|
316 | (1) |
|
10.3.4.2 Assessing Classifiers |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
|
10.3.5.3 Evaluation of Acoustic Classifiers |
|
|
318 | (1) |
|
10.3.5.4 Inference from Human Data |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
321 | (6) |
|
|
323 | (4) |
|
11 Symbolic Data Mining in Musicology |
|
|
327 | (20) |
|
|
|
|
327 | (1) |
|
11.2 The Role of the Computer |
|
|
328 | (1) |
|
11.3 Symbolic Data Mining Methodology |
|
|
329 | (2) |
|
11.3.1 Denning the Problem |
|
|
330 | (1) |
|
11.3.2 Encoding and Normalization |
|
|
330 | (1) |
|
11.3.3 Musicological Interpretation |
|
|
331 | (1) |
|
11.4 Case Study: The Buxheim Organ Book |
|
|
331 | (13) |
|
11.4.1 Research Questions |
|
|
332 | (3) |
|
11.4.2 Encoding and Normalization |
|
|
335 | (1) |
|
11.4.3 Extraction, Filtering, and Interpretation |
|
|
336 | (1) |
|
11.4.3.1 Double Leading Tones |
|
|
336 | (3) |
|
|
339 | (5) |
|
|
344 | (3) |
|
|
344 | (3) |
Index |
|
347 | |