|
|
1 | (28) |
|
|
1 | (5) |
|
1.2 Supersymmetric Theories with 8 Real Supercharges |
|
|
6 | (18) |
|
|
7 | (4) |
|
|
11 | (1) |
|
1.2.3 Rigid Conformal Symmetry |
|
|
12 | (7) |
|
1.2.4 Superconformal Groups |
|
|
19 | (4) |
|
1.2.5 Rigid Superconformal Symmetry |
|
|
23 | (1) |
|
|
24 | (5) |
|
2 Gauging Spacetime Symmetries: The Weyl Multiplet |
|
|
29 | (36) |
|
2.1 Rules of (Super)Gauge Theories, Gauge Fields and Curvatures |
|
|
29 | (2) |
|
2.2 Gauge Theory of Spacetime Symmetries |
|
|
31 | (7) |
|
2.2.1 General Considerations |
|
|
31 | (3) |
|
2.2.2 Transformations of the Frame Fields |
|
|
34 | (1) |
|
2.2.3 Transformations of the Other Gauge Fields |
|
|
35 | (3) |
|
2.2.4 Transformations of Matter Fields |
|
|
38 | (1) |
|
2.3 Covariant Quantities and Covariant Derivatives |
|
|
38 | (9) |
|
2.3.1 Proof of Lemma on Covariant Derivatives |
|
|
40 | (1) |
|
2.3.2 Example: D = 6 Abelian Vector Multiplet |
|
|
41 | (1) |
|
2.3.3 Illustration of Full Calculation of the Transformation of a Curvature |
|
|
42 | (2) |
|
|
44 | (2) |
|
2.3.5 Non-closure Terms in D = 6 Abelian Vector Multiplet |
|
|
46 | (1) |
|
2.4 Curvature Constraints |
|
|
47 | (4) |
|
|
47 | (2) |
|
2.4.2 Other Conventional Curvature Constraints |
|
|
49 | (2) |
|
2.5 Example: Non-SUSY Sigma Model |
|
|
51 | (2) |
|
2.6 The Standard Weyl Multiplets |
|
|
53 | (10) |
|
2.6.1 Matter Fields Completing the Weyl Multiplet |
|
|
53 | (4) |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (2) |
|
|
63 | (2) |
|
|
65 | (46) |
|
3.1 Review of the Strategy |
|
|
66 | (1) |
|
3.2 Conformal Properties of the Multiplets |
|
|
67 | (26) |
|
|
69 | (4) |
|
3.2.2 Intermezzo: Chiral Multiplet |
|
|
73 | (4) |
|
3.2.3 Rigid Hypermultiplets |
|
|
77 | (13) |
|
3.2.4 Hypermultiplets in Superconformal Gravity |
|
|
90 | (2) |
|
3.2.5 Tensor Multiplet in D = 4 Local Superconformal Case |
|
|
92 | (1) |
|
3.3 Construction of the Superconformal Actions |
|
|
93 | (14) |
|
3.3.1 Action for Vector Multiplets in D = 4 |
|
|
93 | (6) |
|
3.3.2 Action for Vector Multiplets in D = 5 |
|
|
99 | (2) |
|
3.3.3 Action for Hypermultiplets |
|
|
101 | (6) |
|
3.3.4 Splitting the Hypermultiplets and Example |
|
|
107 | (1) |
|
|
107 | (4) |
|
4 Gauge Fixing of Superconformal Symmetries |
|
|
111 | (48) |
|
4.1 General Considerations |
|
|
111 | (2) |
|
4.2 Pure N = 2 Supergravity |
|
|
113 | (7) |
|
4.2.1 The Minimal Field Representation |
|
|
113 | (3) |
|
4.2.2 Version with Hypermultiplet Compensator |
|
|
116 | (2) |
|
4.2.3 Version with Tensor Multiplet Compensator |
|
|
118 | (1) |
|
4.2.4 Version with Nonlinear Multiplet Compensator |
|
|
119 | (1) |
|
4.3 Reduction from N = 2 to N = 1 |
|
|
120 | (5) |
|
4.3.1 Reduction of the N = 2 Weyl Multiplet |
|
|
121 | (2) |
|
4.3.2 Reduction of the Compensating Vector Multiplet |
|
|
123 | (1) |
|
4.3.3 Reduction of the Second Compensating Multiplet |
|
|
124 | (1) |
|
4.4 Matter-Coupled Supergravity |
|
|
125 | (9) |
|
4.4.1 Elimination of Auxiliary Fields |
|
|
126 | (2) |
|
4.4.2 Gauge Fixing for Matter-Coupled Supergravity |
|
|
128 | (2) |
|
4.4.3 Full Action for D = 4 |
|
|
130 | (2) |
|
4.4.4 Supersymmetry Transformations |
|
|
132 | (2) |
|
4.5 Vector Multiplet Scalars: Special Kahler Geometry |
|
|
134 | (12) |
|
4.5.1 Rigid Special Kahler Manifold |
|
|
134 | (1) |
|
4.5.2 Coordinates in the Projective Special Kahler Manifold |
|
|
135 | (3) |
|
4.5.3 The Kahler Potential |
|
|
138 | (2) |
|
4.5.4 Positivity Requirements |
|
|
140 | (1) |
|
|
141 | (1) |
|
4.5.6 Kahler Reparameterizations |
|
|
142 | (1) |
|
4.5.7 The Kahler Covariant Derivatives |
|
|
143 | (3) |
|
4.6 Coordinates in the Quaternionic-Kahler Manifold |
|
|
146 | (7) |
|
4.6.1 Projective Coordinates |
|
|
146 | (4) |
|
4.6.2 S-Supersymmetry, Dilatations and SU(2) Gauge Fixing |
|
|
150 | (1) |
|
4.6.3 Isometries in the Projective Space |
|
|
151 | (1) |
|
4.6.4 Decomposition Rules |
|
|
152 | (1) |
|
4.7 D = 5 and D = 6, N = 2 Supergravities |
|
|
153 | (2) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (4) |
|
|
159 | (46) |
|
5.1 D = 4, N = 2 Bosonic Action |
|
|
160 | (1) |
|
5.2 Symplectic Transformations |
|
|
161 | (5) |
|
5.2.1 Electric-Magnetic Dualities of Vector Fields in D = 4 |
|
|
161 | (2) |
|
5.2.2 Symplectic Transformations in N = 2 |
|
|
163 | (3) |
|
5.3 Characteristics of a Special Geometry |
|
|
166 | (12) |
|
5.3.1 Symplectic Formulation of the Projective Kahler Geometry |
|
|
167 | (4) |
|
|
171 | (2) |
|
5.3.3 Symplectic Equations and the Curvature Tensor |
|
|
173 | (5) |
|
5.4 Isometries and Symplectic Geometry |
|
|
178 | (7) |
|
5.4.1 Isometries of a Kahler Metric |
|
|
178 | (4) |
|
5.4.2 Isometries in Symplectic Formulation |
|
|
182 | (1) |
|
5.4.3 Gauged Isometries as Symplectic Transformations |
|
|
183 | (2) |
|
5.5 Electric-Magnetic Charges: Attractor Phenomenon |
|
|
185 | (9) |
|
5.5.1 The Spacetime Ansatz and an Effective Action |
|
|
186 | (2) |
|
5.5.2 Maxwell Equations and the Black Hole Potential |
|
|
188 | (3) |
|
5.5.3 Field Strengths and Charges |
|
|
191 | (2) |
|
|
193 | (1) |
|
5.6 Quaternionic-Kahler Manifolds |
|
|
194 | (3) |
|
5.6.1 Supersymmetry and Quaternionic Geometry |
|
|
194 | (1) |
|
5.6.2 Quaternionic Manifolds |
|
|
195 | (1) |
|
5.6.3 Quaternionic-Kahler Manifolds |
|
|
196 | (1) |
|
5.6.4 Quaternionic-Kahler Manifolds in Supergravity |
|
|
196 | (1) |
|
5.7 Relations Between Special Manifolds |
|
|
197 | (3) |
|
|
197 | (1) |
|
5.7.2 Homogeneous and Symmetric Spaces |
|
|
198 | (2) |
|
|
200 | (5) |
|
|
205 | (28) |
|
6.1 Final D = 4 Poincare Supergravity Results |
|
|
205 | (19) |
|
|
208 | (4) |
|
|
212 | (3) |
|
6.1.3 The Fermionic Part of the Poincare Action |
|
|
215 | (4) |
|
|
219 | (1) |
|
6.1.5 Supersymmetry and Gauge Transformations |
|
|
220 | (4) |
|
6.2 Final Results for D = 5 Poincare Supergravity |
|
|
224 | (4) |
|
|
228 | (1) |
|
|
229 | (4) |
|
|
233 | (14) |
|
|
233 | (3) |
|
|
236 | (2) |
|
A.2.1 Raising and Lowering Indices |
|
|
236 | (1) |
|
|
237 | (1) |
|
A.2.3 Transformations, Parameters and Gauge Fields |
|
|
237 | (1) |
|
A.3 Gamma Matrices and Spinors |
|
|
238 | (6) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
A.3.4 Products of y Matrices and Fierzing |
|
|
242 | (2) |
|
A.4 Spinors from 5 to 6 and 4 Dimensions |
|
|
244 | (3) |
|
|
247 | (8) |
|
C Comparison of Notations |
|
|
249 | (6) |
|
|
251 | (4) |
Index |
|
255 | |