Atnaujinkite slapukų nuostatas

El. knyga: Naive Set Theory: A Rigorous Approach

  • Formatas: 238 pages
  • Išleidimo metai: 21-Feb-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040305577
  • Formatas: 238 pages
  • Išleidimo metai: 21-Feb-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040305577

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Naļve Set Theory: A Rigorous Approach aims to provide a complete and unitary presentation of naive set theory as the foundation of the whole mathematics. Suitable for undergraduate students, this book focuses on the main foundational issues, trying to clarify explicitly what is (necessarily) assumed as intuitively known and what is rigorously founded on more elementary concepts. It analyses in detail the nature of natural numbers, both as metatheoretical objects and through their set-theoretical model. The author also pays particular attention to some topics that are not usually covered by the literature on naive set theory, like the universal properties of Cartesian product and disjoint union, that lead to a precise formulation of their basic features (associativity, commutativity, and distributivity). The exposition is organized coherently from the initial meta-theoretical notions to the construction of the universe of well-founded sets.

Features:





Replete with exercises, partially spread within the text and partially listed at the end of each chapter with a solutions manual available on www.Routledge.com/9781032933047. Covers foundational topics that are not usually discussed in the literature on naive set theory, such as universal properties of Cartesian product and disjoint union, through which one can properly state associativity, commutativity, and distributivity of these operations.

1. Preliminaries.
2. Hereditary Sets and Basic Operations.
3. Relations and Functions.
4. Sets and Indexed Sets.
5. Universal Properties.
6. Sets and Classes.
7. Embedding Natural Numbers in Set Theory.
8. Well-Orders.
9. Axioms of Choice.
10. Cardinality.
11. Ordinals.
12. Cardinals.
13. Well-Founded Sets.

Fabio Ferrari Ruffino received his bachelors degree in mathematics from the University of Milan, his masters degree from the University of Pisa and at Scuola Normale Superiore, and his Ph.D. from SISSA (International School for Advanced Studies, Trieste, Italy). He is currently an Assistant Professor at Sćo Carlos University, Brazil. In his research, he has been working mainly on geometry and topology, with a particular focus on the applications in theoretical physics (especially in string theory). He has always been particularly interested in foundational problems from a philosophical point of view in both his research and teaching activities.