Atnaujinkite slapukų nuostatas

El. knyga: Nanobiomaterials: Nanostructured Materials for Biomedical Applications

Edited by (Professor, UNC/NCSU Joint Department of Biomedical Engineering, NC, USA)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 15-Sep-2017
  • Leidėjas: Woodhead Publishing Ltd
  • Kalba: eng
  • ISBN-13: 9780081007259
  • Formatas: EPUB+DRM
  • Išleidimo metai: 15-Sep-2017
  • Leidėjas: Woodhead Publishing Ltd
  • Kalba: eng
  • ISBN-13: 9780081007259

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Nanobiomaterials: Nanostructured Materials for Biomedical Applications serves as a unique source for the rapidly growing biomaterials community on topics at the interface of biomaterials and nanotechnology. The book covers an extensive range of topics related to the processing, characterization, modeling, and applications of nanostructured medical device materials and biological materials.

Topics cover the science and technology of nanostructured ceramics, polymers, metals, and composites, including nanocomposites, self-assembled materials, and biological macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted, as are innovative techniques for characterizing and modeling nanostructured material properties, in vitro behavior, and in vivo behavior.

In addition, applications of nanostructured biomaterials in bioMEMS, cardiology, drug delivery, gene therapy, orthopedics, ophthalmology, sensing, separation, and tissue engineering are comprehensively covered.

  • Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials
  • Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials
  • Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials

Daugiau informacijos

Covers the wide range of materials, technologies, and biomedical applications of nanobiomaterials in one complete volume
List of contributors
xi
1 Nanostructured ceramics
1(16)
L. Hermansson
1.1 Introduction
1(1)
1.2 Test methods for nanostructured ceramics
1(1)
1.3 Nanostructured bioceramics
2(8)
1.4 Application field of nanostructured bioceramics
10(5)
1.5 Conclusion and summary
15(2)
Acknowledgement
15(1)
References
15(2)
2 Bio-based nanostructured materials
17(24)
M. Razavi
2.1 Introduction
17(2)
2.2 Polysaccharide-based nanomaterials
19(5)
2.3 Carbon
24(2)
2.4 Clay
26(2)
2.5 Plant proteins
28(2)
2.6 Keratin
30(1)
2.7 Phage
31(1)
2.8 Natural bioceramics
32(2)
2.9 Conclusion and future trends
34(7)
References
35(6)
3 Self-assembled nanomaterials
41(54)
M.C. Garcia
C. Aloisio
R. Onnainty
G. Ullio-Gamboa
3.1 Introduction
41(1)
3.2 Why self-assembled nanomaterials?
42(1)
3.3 Polymer-based self-assembled carriers
42(24)
3.4 Lipid-based self-assembled carriers
66(12)
3.5 Concluding remarks and future perspectives
78(17)
References
79(16)
4 Nanowires for biomedical applications
95(18)
T. Sun
W.M. Tsang
4.1 Introduction
95(1)
4.2 Fabrication
95(5)
4.3 Biocompatibility
100(1)
4.4 Application
101(12)
References
109(2)
Further reading
111(2)
5 [ 60]Fullerene and derivatives for biomedical applications
113(24)
F. Moussa
5.1 Introduction
113(1)
5.2 Physicochemical properties
114(1)
5.3 Physical properties responsible of the main biological effects
115(1)
5.4 Potential biomedical applications
116(4)
5.5 Toxicity, pharmacokinetics, metabolism, and excretion
120(8)
5.6 Conclusion
128(9)
References
129(7)
Further reading
136(1)
6 Self-assembled monolayers in biomaterials
137(42)
A. Hasan
L.M. Pandey
6.1 Introduction
137(1)
6.2 Self-assembled monolayers
138(30)
6.3 Conclusion
168(11)
References
169(10)
7 Nanostructured surfaces in biomaterials
179(18)
K. Jurczyk
M. U. Jurczyk
7.1 Introduction
179(1)
7.2 Surface modification methods of titanium
180(3)
7.3 Bulk nanostructured titanium
183(1)
7.4 Bulk titanium-bioceramic nanocomposites
183(6)
7.5 Nanostructured surfaces
189(2)
7.6 Antibacterial activity of nanostructured Ti-45S5 Bioglass-Ag composite
191(1)
7.7 Conclusion
192(5)
References
192(5)
8 Magnetic nanoparticle synthesis
197(34)
J. Baker
8.1 Introduction
197(4)
8.2 Production of magnetic nanoparticles
201(15)
8.3 Stabilization/coating methods
216(2)
8.4 Conclusions
218(13)
References
219(10)
Further reading
229(2)
9 Toxicity of nanostructured biomaterials
231(26)
R.K. Tekade
R. Maheshwari
N.K. Jain
9.1 Nanotoxicology: Concepts and claims
231(3)
9.2 Dose and dosimetry of nanobiomaterials
234(1)
9.3 Surface topography of nanobiomaterials and associated surface reactivity
234(1)
9.4 NPs and the environment
235(1)
9.5 Interfaces between nanobiomaterials and target cells
235(1)
9.6 Routes of entry of nanobiomaterials
236(1)
9.7 Effect of nanobiomaterials on biomolecules
237(1)
9.8 Nanobiomaterials and their effect on DNA
237(1)
9.9 In vivo toxicology of nanobiomaterials in humans: Prospective mechanisms
237(1)
9.10 Toxicity of different nanostructured biomaterials
238(9)
9.11 Future scope and conclusion
247(10)
Acknowledgments
248(1)
References
248(9)
10 Use of nanostructured materials in hard tissue engineering
257(40)
L.C. du Toit
P. Kumar
Y.E. Choonara
V. Pillay
10.1 Introduction
257(1)
10.2 The intricacies of hard tissue architecture and engineering considerations
258(4)
10.3 Fabrication approaches for designing nanostructured materials for hard tissue engineering
262(2)
10.4 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for bone tissue engineering
264(19)
10.5 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for dental tissue engineering
283(5)
10.6 Conclusions, challenges, and proposed future advances for nanostructured materials in hard tissue engineering
288(9)
References
289(8)
11 Nanobiomaterials in dentistry
297(22)
S. Navarro-Suarez
A. Flores-Palma
R. Flores-Ruiz
J.-L. Gutierrez-Perez
D. Torres-Lagares
11.1 Introduction to nanotechnology in dentistry
297(1)
11.2 Nanotechnology in dentistry
298(12)
11.3 Discussion and conclusions
310(9)
References
311(7)
Further reading
318(1)
12 Use of nanostructured materials in medical diagnostics
319(20)
H.-P. Lin
B.-R. Li
12.1 Zero-dimensional (0-D) nanostructured materials
319(5)
12.2 One-dimensional (1-D) nanostructured materials
324(4)
12.3 Two-dimensional (2-D) nanostructured materials
328(4)
12.4 Summary
332(7)
References
333(6)
13 Nanostructured polymers
339(18)
M.C. Garcia
F. Quiroz
13.1 Introduction
339(1)
13.2 Amphiphilic block copolymers
340(4)
13.3 Nanostructuration methods
344(5)
13.4 Biomedical applications of NSPs
349(2)
13.5 Conclusions and future challenge
351(6)
References
352(5)
14 Nanoparticles for biomedical applications: An overview
357(28)
H.A. Khan
M.K. Sakharkar
A. Nayak
U. Kishore
A. Khan
14.1 Introduction
357(1)
14.2 Imaging applications of nanoparticles
358(4)
14.3 Targeted drug delivery for therapeutic applications
362(4)
14.4 Theranostic applications of nanoparticles
366(6)
14.5 Application of nanoparticles in vaccination and immunotherapy
372(4)
14.6 Conclusion
376(9)
References
377(8)
15 Nanofabrication technologies to control cell and tissue function for biomedical applications
385(26)
S. Ishikawa
K. Iijima
H. Otsuka
15.1 Introduction
385(1)
15.2 Cell patterning techniques
385(1)
15.3 The basis of cellular patterning: Nonfouling surface chemistries
386(7)
15.4 Patterned 3D-microorganized cells using dry etching (plasma etching)
393(6)
15.5 Cell assembly for tissue engineering
399(1)
15.6 Photolithography
400(2)
15.7 Microcontact printing
402(1)
15.8 Conclusions
402(9)
Acknowledgments
403(1)
References
403(6)
Further reading
409(2)
16 Quantum dots for biomedical applications
411(26)
D.A. Granada-Ramirez
J.S. Arias-Ceron
R. Rodriguez-Fragoso
F. Vazquez-Hernandez
J.P. Luna-Arias
J.L. Herrera-Perez
J.G. Mendoza-Alvarez
16.1 Introduction
411(2)
16.2 Biomedical applications with metallic materials
413(5)
16.3 Semiconductor QDs for biomedical applications
418(5)
16.4 Semiconductor fluorescence
423(14)
References
426(10)
Further reading
436(1)
17 Polymeric and liposomal nanomaterials
437(28)
C.Z. Bueno
C.A. Oliveira
C.O. Rangel-Yagui
17.1 Introduction
437(1)
17.2 Liposomes
437(3)
17.3 Polymeric nanoparticles
440(14)
17.4 Conclusions and future perspectives
454(11)
Acknowledgments
456(1)
References
456(7)
Further reading
463(2)
18 Use of nanostructured materials in soft tissue engineering
465(16)
S. Maity
18.1 Soft tissues
465(1)
18.2 Mechanical behavior of soft tissue
465(1)
18.3 Background of artificial materials in biomedical applications
466(1)
18.4 Tissue engineering: Bioactive materials
467(1)
18.5 Biomaterials for soft tissue engineering
468(1)
18.6 Nanomaterial and nanotechnology for soft tissue engineering
469(12)
References
473(7)
Further reading
480(1)
19 Use of nanostructured materials in implants
481(22)
S. Magesh
G. Vasanth
A. Revathi
M. Geetha
19.1 Introduction
481(2)
19.2 Conventional to nanomaterials---Transformation
483(1)
19.3 Nanostructured metallic materials
484(5)
19.4 Nanostructured surfaces
489(7)
19.5 Scaffold nanotechnology
496(2)
19.6 Future aspects
498(5)
References
498(5)
20 Use of nanostructured materials in drug delivery
503(48)
F. Vazquez-Hernandez
D.A. Granada-Ramirez
J.S. Arias-Ceron
P. Rodriguez-Fragoso
J.G. Mendoza-Alvarez
E. Ramon-Gallegos
A. Cruz-Orea
J.P. Luna-Arias
20.1 Introduction
503(1)
20.2 Chitosan nanoparticles
504(3)
20.3 Dendrimers nanocarriers
507(3)
20.4 Carbon nanotubes in drug delivery
510(3)
20.5 Conclusions
513(1)
20.6 Hydroxyapatite nanoparticles
514(3)
20.7 Liposomes as drug delivery system
517(3)
20.8 Quantum dots as drug delivery systems
520(3)
20.9 Magnetic nanoparticles for drug delivery
523(2)
20.10 Conclusions
525(1)
20.11 Gold nanoparticles applied to photodynamic therapy for cancer theranostics
525(7)
20.12 Conclusions
532(19)
Acknowledgments
533(1)
References
533(16)
Further reading
549(2)
Index 551
Dr. Roger Narayan is a Distinguished Professor in the Joint Department of Biomedical Engineering at the University of North Carolina and North Carolina State University. He is an author of over two hundred publications as well as several book chapters on novel approaches for the processing of biomedical materials. He currently serves as an editorial board member for several academic publications, including as executive editor of Biomaterials Forum (Society for Biomaterials) and associate editor of Applied Physics Reviews (AIP Publishing). Dr. Narayan has also edited several books, including the first and second editions of the textbook Biomedical Materials (Springer), the handbook Materials for Medical Devices (ASM International), the Encyclopedia of Biomedical Engineering (Elsevier), and the Encyclopedia of Sensors and Biosensors (Elsevier). Dr. Narayan currently leads the Materials Research Society Bio Staging Task Force on 3D/Bioprinting; he has previously served as director of the TMS Functional Materials Division, the ASM International Emerging Technologies Awareness Committee, and the American Ceramic Society Bioceramics Division. As the 2016-7 ASME Swanson Fellow, he worked with America Makes, the national additive manufacturing institute, on several activities to disseminate additive manufacturing technology, including the development of a workforce/education/outreach roadmap for additive manufacturing and the development of a repository containing educational materials related to additive manufacturing. He has served as the director of a Science Saturday outreach program at the North Carolina Museum of Natural Sciences since 2010. Dr. Narayan has received several honors for his research activities, including the University of North Carolina Jefferson-Pilot Fellowship in Academic Medicine, the National Science Faculty Early Career Development Award, and the Office of Naval Research Young Investigator Award. He has been elected as Fellow of AAAS, ASME, ASM International, AIMBE, American Ceramic Society, and the Materials Research Society. His journal papers (current h index=64) are indexed at Google Scholar.