Atnaujinkite slapukų nuostatas

El. knyga: Nanocellulose: From Fundamentals to Advanced Materials

Edited by (University of Grenoble Alpes, France), Edited by (Wuhan University of Technology, China), Edited by
  • Formatas: EPUB+DRM
  • Išleidimo metai: 25-Mar-2019
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527807444
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 25-Mar-2019
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527807444
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Comprehensively introduces readers to the production, modifications, and applications of nanocellulose

This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties.

Featuring contributions from many noted experts in the field, Nanocellulose: From Fundamentals to Advanced Materials examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development; reinforcing mechanism of cellulose nanocrystals in nanocomposites; and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose.





Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy Covers new reports on the application of nanocellulose Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications

Nanocellulose: From Fundamentals to Advanced Materials is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.
Preface xiii
Acknowledgments xv
1 Introduction to Nanocellulose 1(20)
Jin Huang
Xiaozhou Ma
Guang Yang
Dufresne Alain
1.1 Introduction
1(1)
1.2 Preparation of Nanocellulose
2(2)
1.2.1 Cellulose Nanocrystals
2(1)
1.2.2 Cellulose Nanofibers
3(1)
1.2.3 Bacterial Nanocellulose
4(1)
1.3 Surface Modification of Nanocellulose
4(5)
1.3.1 Esterification
7(1)
1.3.2 Oxidation
7(1)
1.3.3 Etherification
8(1)
1.3.4 Amidation
8(1)
1.3.5 Other Chemical Methods
8(1)
1.3.6 Physical Interaction
9(1)
1.4 Nanocellulose-Based Materials and Applications
9(4)
1.5 Conclusions and Prospects
13(2)
References
15(6)
2 Structure and Properties of Cellulose Nanocrystals 21(32)
Chunyu Chang
Junjun Hou
Peter R. Chang
Jin Huang
2.1 Introduction
21(1)
2.2 Extraction of Cellulose Nanocrystals
21(11)
2.2.1 Extraction of Cellulose Nanocrystals by Acid Hydrolysis
21(6)
2.2.2 Pretreatments of Cellulose Before Acid Hydrolysis
27(4)
2.2.3 Other Methods of Preparing Cellulose Nanocrystals
31(1)
2.3 Structures and Properties of Cellulose Nanocrystals
32(13)
2.3.1 Physical Properties of Cellulose Nanocrystals
32(7)
2.3.2 Properties of Cellulose Nanocrystal Suspension
39(6)
References
45(8)
3 Structure and Properties of Cellulose Nanofibrils 53(28)
Pei Huang
Chao Wang
Yong Huang
Min Wu
3.1 Production of CNF
53(11)
3.1.1 Chemical Bleaching
54(1)
3.1.2 Mechanical Disintegration
54(9)
3.1.2.1 Homogenization
54(4)
3.1.2.2 Grinding
58(1)
3.1.2.3 Ball-milling
59(1)
3.1.2.4 Ultrasonication
59(2)
3.1.2.5 Steam Explosion
61(1)
3.1.2.6 Aqueous Counter Collision
61(1)
3.1.2.7 Refining
62(1)
3.1.2.8 Cryocrushing
62(1)
3.1.2.9 Twin-Screw Extrusion
62(1)
3.1.2.10 Other Methods
63(1)
3.1.3 Pretreatment
63(1)
3.2 Features and Properties
64(8)
3.2.1 Morphology of CNF
64(1)
3.2.2 Rheology
64(1)
3.2.3 CNF in Different Forms
65(18)
3.2.3.1 Suspensions
65(1)
3.2.3.2 Powders
66(1)
3.2.3.3 Films
67(3)
3.2.3.4 Hydrogels
70(2)
3.2.3.5 Aerogels CNF
72(1)
3.3 Conclusion
72(2)
References
74(7)
4 Synthesis, Structure, and Properties of Bacterial Cellulose 81(34)
Muhammad Wajid Ullah
Sehrish Manan
Sabella J. Kiprono
Mazhar Ul-Islam
Guang Yang
4.1 Introduction
81(2)
4.2 Biogenesis of Bacterial Cellulose
83(5)
4.2.1 Biochemistry of BC Synthesis
83(2)
4.2.2 Biochemical Pathway of BC Production
85(2)
4.2.3 Molecular Regulation of BC Synthesis
87(1)
4.3 Structure and Exciting Features of Bacterial Cellulose
88(5)
4.3.1 Chemical Structure and Properties
89(1)
4.3.2 Physiological Features
89(1)
4.3.3 Self-assembly and Crystallization
90(1)
4.3.4 Ultrafine Thin Fibrous Structure
90(1)
4.3.5 Macrostructure Control and Orientation
91(1)
4.3.6 Porosity and Materials Absorption Potential of BC for Composite Synthesis
91(1)
4.3.7 Biocompatibility
92(1)
4.3.8 Biodegradability
92(1)
4.4 Production of Bacterial Cellulose: Synthesis Approaches
93(2)
4.4.1 Static Fermentative Cultivation: Production of BC Membrane, Film, or Sheet
93(1)
4.4.2 Shaking Fermentative Cultivation: Production of BC Pellets
94(1)
4.4.3 Agitation Fermentative Cultivation: Production of BC Granules
94(1)
4.4.3.1 Rotating Disk Reactor
95(1)
4.4.3.2 Trickling Bed Reactor
95(1)
4.5 Additives to Enhance BC Production
95(6)
4.5.1 Carboxymethylcellulose
97(1)
4.5.2 Organic Acids
97(1)
4.5.3 Vitamin C
97(2)
4.5.4 Sodium Alginate
99(1)
4.5.5 Alcohols
99(1)
4.5.6 SSGO
99(1)
4.5.7 Lignosulfate
100(1)
4.5.8 Agar and Xanthan
100(1)
4.5.9 Thin Stillage
100(1)
4.6 Strategies Toward Low-Cost BC Production
101(4)
4.6.1 Fruit Juices
101(1)
4.6.2 Sugarcane Molasses
101(2)
4.6.3 Agricultural and Industrial Wastes
103(1)
4.6.4 Food Wastes
104(1)
4.7 Conclusions and Future Prospects
105(1)
Acknowledgment
105(1)
References
106(9)
5 Surface Chemistry of Nanocellulose 115(40)
Ge Zhu
Ning Lin
5.1 Brief Introduction to Nanocellulose Family
115(4)
5.1.1 Cellulose Nanocrystals (CNCs)
115(2)
5.1.2 Cellulose Nanofibrils (CNFs)
117(1)
5.1.3 Bacterial Cellulose (BC)
117(2)
5.2 Surface Modification of Nanocellulose
119(20)
5.2.1 Physical Adsorption of Surfactants
119(2)
5.2.2 Sulfonation
121(1)
5.2.3 TEMPO-oxidation
122(1)
5.2.4 Esterification
123(2)
5.2.5 Silylation
125(1)
5.2.6 Grafting Onto
126(5)
5.2.7 Grafting From
131(6)
5.2.7.1 Ring-Opening Polymerization (ROP)
132(2)
5.2.7.2 Living Radical Polymerization (LRP)
134(3)
5.2.8 Chemical Modification from End Hemiacetal
137(2)
5.3 Advanced Functional Modifications
139(6)
5.3.1 Fluorescent and Dye Molecules
139(3)
5.3.2 Amino Acid and DNA
142(2)
5.3.3 Self-cross-linking of Nanocrystals
144(1)
References
145(10)
6 Current Status of Nanocellulose-Based Nanocomposites 155(46)
Xiaozhou Ma
Yuhuan Wang
Yang Shen
Jin Huang
Alain Dufresne
6.1 Introduction
155(1)
6.2 Cellulose Nanocrystal-Filled Nanocomposites
156(16)
6.2.1 Polyolefin-Based Nanocomposites
156(5)
6.2.2 Rubber-Based Nanocomposites
161(3)
6.2.3 Polyester-Based Nanocomposites
164(3)
6.2.4 Polyurethane- and Waterborne Polyurethane-Based Nanocomposites
167(2)
6.2.5 Epoxy- and Waterborne Epoxy-Based Nanocomposites
169(2)
6.2.6 Natural Polymer-Based Nanocomposites
171(1)
6.3 Fibrillated Cellulose-Filled Nanocomposites
172(14)
6.3.1 Polyolefin-Based Nanocomposites
172(4)
6.3.2 Rubber-Based Nanocomposites
176(2)
6.3.3 Polyester-Based Nanocomposites
178(2)
6.3.4 Polyurethane- and Waterborne Polyurethane-Based Nanocomposites
180(2)
6.3.5 Natural Polymer-Based Nanocomposites
182(2)
6.3.6 Other Polymer Nanocomposites Filled with Fibrillated Cellulose
184(2)
6.4 Conclusion and Prospect
186(1)
References
186(15)
7 Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites 201(50)
Yaoyao Chen
Lin Gan
Jin Huang
Alain Dufresne
7.1 Percolation Approach
201(10)
7.1.1 Mean-Field Theory
202(2)
7.1.2 Percolation Model
204(4)
7.1.3 Factors Influencing the Percolation Network Formation
208(3)
7.2 Interfacial Behaviors Between Cellulose Nanocrystals and Matrix
211(31)
7.2.1 Effect of Functional Groups on CNC Surface on Interfacial Interaction
211(14)
7.2.2 Effect of Segmental Entanglement Mediated with Grafted Chains on CNC Surface
225(4)
7.2.3 Role of Co-continuous Structure Derived from Chemical Coupling of Filler/Matrix
229(24)
7.2.3.1 Thiol-ene Coupling Process Between Modified Cellulose Nanocrystals (CNCs) and Matrix
230(2)
7.2.3.2 Huisgen Cycloaddition Click Chemistry Between Modified CNCs and Matrices
232(1)
7.2.3.3 Schiffs Base Reaction Between Cellulose Nanocrystals (CNCs) and Matrix
233(4)
7.2.3.4 Esterification Reaction Between CNCs and The Matrix
237(1)
7.2.3.5 Chemical Coupling Between Hydroxyl Groups of Matrix and Aldehyded CNCs or Modified CNCs
237(5)
7.3 Conclusions
242(1)
References
243(8)
8 Role of Cellulose Nanofibrils in Polymer Nanocomposites 251(26)
Thiago H.S. Maia
Manila Calazans
Vitor Lima
Francys K.V. Moreira
Alessandra de Almeida Lucas
8.1 Introduction
251(1)
8.2 Characteristics of Cellulose Nanofibrils
252(1)
8.3 Mechanical Properties of CNF Polymer Nanocomposites
253(5)
8.3.1 Thermoset Resins
254(1)
8.3.2 Thermoplastics
255(2)
8.3.3 Waterborne Polymer Systems
257(1)
8.4 Effects of Extrusion on Mechanical Properties of PE/CNF Nanocomposites
258(6)
8.5 Effect of Fiber Size and Lignin Presence
264(3)
8.6 Multifunctionality: Optical and Barrier Properties of CNF Nanocomposites
267(2)
8.7 Outlooks in CNF Nanocomposites
269(1)
References
269(8)
9 Advanced Materials Based on Self-assembly of Cellulose Nanocrystals 277(38)
Lin Gan
Siyuan Liu
Dong Li
Jin Huang
9.1 Self-assembly Structure of CNCs
277(4)
9.1.1 Structure of CNC Liquid Crystals
278(1)
9.1.2 Components of CNC Self-assembly
279(1)
9.1.3 Form of CNC Self-assembly Products
279(2)
9.2 Self-assembly Methods and Materials
281(3)
9.2.1 Casting Method and Spin Coating Method
281(2)
9.2.2 Vacuum-Assisted Self-assembly
283(1)
9.2.3 Evaporation-Induced Self-assembly
284(1)
9.3 Structural Adjustment of CNC Self-assembly
284(7)
9.3.1 Cholesteric Structure of Neat CNC Films
284(2)
9.3.2 Cholesteric Structure and Cross-linking Structure in Gel
286(2)
9.3.3 Cholesteric Structure in Bulk Materials of CNC Composite Self-assembly
288(2)
9.3.4 Nematic Structure
290(1)
9.4 Modifying Surface Chemical Structure of CNC
291(4)
9.5 Properties of CNC Self-assembly
295(10)
9.5.1 Mechanical Properties
295(3)
9.5.1.1 Mechanical Properties of CNC Films
295(1)
9.5.1.2 Mechanical Properties of CNC Composite Films
295(3)
9.5.2 Iridescent Color
298(6)
9.5.2.1 Iridescent Color Control of CNC Films
298(2)
9.5.2.2 Iridescent Color Control of CNC Composite Materials
300(2)
9.5.2.3 Optical Control of CNC Self-assembly Gels
302(2)
9.5.3 Plasmonic Properties of CNC
304(1)
9.6 Potential Applications
305(4)
9.6.1 Oil/Water Separation
305(1)
9.6.2 Application of Optical Materials
306(1)
9.6.2.1 Optical Application of CNC Films
306(1)
9.6.2.2 Optical Application of CNC Composite Films
306(1)
9.6.3 Sensors
307(2)
References
309(6)
10 Potential Application Based on Colloidal Properties of Cellulose Nanocrystals 315(34)
Shiyu Fu
Linxin Zhong
10.1 Colloidal Properties of CNC and Applications in Functional Materials
315(9)
10.2 Nanocellulose for Paper and Packaging
324(15)
10.2.1 Nanocellulose for Paper Coating
326(2)
10.2.2 Microfibrillated Cellulose Coated Paper for Delivery System
328(1)
10.2.3 Water-Resistant Nanopaper Based on Modified Nanocellulose
329(5)
10.2.4 Effect of Chemical Composition on Microfibrillar Cellulose Film
334(2)
10.2.5 Antimicrobial Diffusion Films Based on Microfibrillated Cellulose
336(3)
10.3 Nanocellulose for Wood Coatings
339(2)
References
341(8)
11 Strategies to Explore Biomedical Application of Nanocellulose 349(48)
Yanjie Zhang
Peter R. Chang
Xiaozhou Ma
Ning Lin
Jin Huang
11.1 Introduction
349(1)
11.2 Research on Biological Toxicity of Nanocellulose
349(6)
11.3 Application of Nanocellulose for Immobilization and Recognition of Biological Macromolecules
355(5)
11.4 Application of Nanocellulose for Cell Imaging
360(1)
11.5 Application of Nanocellulose for Cell Scaffolds
361(5)
11.6 Application of Nanocellulose in Tissue Engineering
366(9)
11.6.1 Tissue Repairing, Regeneration, and Healing
366(5)
11.6.1.1 Skin Tissue Repairing
368(2)
11.6.1.2 Bone Tissue Regeneration
370(1)
11.6.2 Tissue Replacement
371(11)
11.6.2.1 Artificial Blood Vessels
371(2)
11.6.2.2 Soft Tissues, Meniscus, and Cartilage
373(2)
11.6.2.3 Nucleus Pulposus Replacement
375(1)
11.7 Application of Nanocellulose in Drug Carrier and Delivery
375(7)
11.8 Application of Nanocellulose as Biomedical Materials
382(7)
11.8.1 Antimicrobial Nanomaterials
382(6)
11.8.1.1 Nanocellulose Incorporated with Inorganic Antimicrobial Agents
385(1)
11.8.1.2 Nanocellulose Incorporated with Organic Antimicrobial Agents
386(2)
11.8.2 Medical Composite Material
388(1)
11.9 Summary
389(1)
References
389(8)
12 Application of Nanocellulose in Energy Materials and Devices 397(26)
Gang Chen
Zhiqiang Fang
12.1 Introduction
397(1)
12.2 Nanocellulose for Lithium Ion Batteries (LIBs)
398(6)
12.2.1 Nanocellulose-Based Electrodes
398(3)
12.2.2 Nanocellulose-Based Separators
401(2)
12.2.3 Nanocellulose-Based Electrolytes
403(1)
12.2.4 Nanocellulose-Based Binders
403(1)
12.3 Nanocellulose for Supercapacitors
404(7)
12.3.1 Nanocellulose As a Substrate
405(1)
12.3.2 Nanocellulose As a Nano-template
406(4)
12.3.3 Nanocellulose As a Mesoporous Membrane
410(1)
12.4 Nanocellulose for Other Energy Devices
411(4)
12.4.1 Fuel Cells
411(1)
12.4.2 Solar Cells
412(2)
12.4.3 Nanogenerators
414(1)
12.5 Conclusion and Outlook
415(1)
References
416(7)
13 Exploration of Other High-Value Applications of Nanocellulose 423(52)
Ruitao Cha
Xiaonan Hao
Kaiwen Mou
Keying Long
Juanjuan Li
Xingyu Jiang
13.1 Fire Resistant Materials
423(9)
13.1.1 Introduction
423(1)
13.1.2 Flame Retardant Additives
424(1)
13.1.2.1 Halogenated Flame Retardants
424(1)
13.1.2.2 Phosphorus-Based Flame Retardants
424(1)
13.1.2.3 Nitrogen-Based Flame Retardants
424(1)
13.1.2.4 Silicon-Based Flame Retardants
424(1)
13.1.2.5 Mineral Flame Retardants
425(1)
13.1.2.6 Nanoparticles
425(1)
13.1.3 Fire Resistance of Clay Nanopaper Based on Nanocellulose
425(7)
13.1.4 Conclusion
432(1)
13.2 Thermal Insulation Materials
432(6)
13.2.1 Introduction
432(1)
13.2.2 Thermal Building Insulation Materials
432(2)
13.2.2.1 Mineral Wool
433(1)
13.2.2.2 Expanded Polystyrene (EPS)
433(1)
13.2.2.3 Polyurethane (PUR)
433(1)
13.2.2.4 Aerogel
433(1)
13.2.3 Thermal Insulation Performance of Nanocellulose-Based Materials
434(3)
13.2.4 Conclusion
437(1)
13.3 The Templated Materials
438(26)
13.3.1 Introduction
438(4)
13.3.2 Synthesis of Magnetic Composite Aerogels
442(12)
13.3.3 Synthesis of Inorganic Hollow Nanotube Aerogels
454(4)
13.3.4 The Self-assembled CNC Templates
458(6)
13.3.5 Conclusion
464(1)
References
464(11)
Index 475
Jin Huang, PhD, is a highly regarded Professor recognized nationally and internationally whose research focuses on chemical and physical methodology of manufacturing green materials from natural polymer resources.

Alain Dufresne, PhD, is Professor in the Department of Converting Biomaterials Packaging in the International School of Paper, Print Media and Biomaterials (Pagora) at University of Grenoble Alpes.

Ning Lin, PhD, is Associate Professor in the School of Chemistry, Chemical Engineering and Life Science at Wuhan University of Technology.